• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Egg Case Silk and Spider Silk Gene Transcription in Black Widow Spiders

Dyrness, Simmone Olivia 01 January 2017 (has links)
Spiders are able to spin a variety of silk types for various purposes, each with their own unique properties. The mechanical properties of spider silk out-perform the mechanical properties of many man-made materials we use today, including tensile steel, KevlarTM, and nylon. To further understand the proteins the silks are made of and how they are synthesized in the silk glands, transcriptional and proteomic analysis was conducted. Transcriptional regulation of silk genes was investigated to determine how and why several silk proteins are transcribed into mRNA products together in the same gland. The tubuliform gland is one of the major contributors of egg case silk production. The mRNA of major ampullate spidroins 1 and 2 (MaSp1, MaSp2) and tubuliform spidroin 1 (TuSp1) is found in the tubuliform glands, but not all are translated into proteins for egg case silk purposes. To understand why not all of the transcribed mRNA products are not being translated into proteins, the promoter sequences of MaSp1, MaSp2, and TuSp1 were aligned and found to contain an E-Box site. Several constructs containing the cDNA of the promoter sequences and cDNA of bHLH transcription factors were built to test transcriptional regulation of MaSp1, MaSp2, and TuSp1. Proteomic analysis of egg case silk and the tubuliform glands was also conducted to identify further proteins synthesized in the tubuliform glands and to determine which of these proteins are ultimately incorporated into the egg case silk fibers by MS/MS analysis. Multiple silk proteins were identified within the tubuliform glands and incorporated into the egg case fibers, suggesting silks are composite fibers of multiple spidroins.
2

Characterizing small molecular weight proteins from Latrodectus hesperus dragline and tubuliform silks

Lin, Albert 01 January 2014 (has links)
Spiders produce a diverse number of silk proteins that are well-known for their extraordinary mechanical and biological properties. Dragline silk has been the most prominent focus of research because of its exceptional high tensile strength and extensibility. In our research, we have focused on the characterization of small molecular weight proteins found within dragline and tubuliform silks. Within the black widow spider, Lactrodectus hesperus, these proteins have been named Cysteine-Rich Protein (CRP) and determined to be a family of five individual proteins. The small protein identified within the tubuliform silks has been named Egg Case Protein 3 (ECP-3). In this study, recombinant expression of ECP-3 in the pET-19b-SUMO vector was to facilitate purification and development of an immunological reagent. Using western blot analysis, we have demonstrated that ECP-3 is efficiently expressed in bacteria. We also investigated CRP1 protein and its ability to bind MaSp1 components using pull down assays to determine potential interactions. No substantial biochemical evidence was produced to demonstrate protein-protein interactions between the two. Additionally, we show that using RT-PCR analysis from mRNAs collected from the major ampullate gland that transcript levels for CRP-family members from non-silked and a silked spider are different. CRP2 and CRP4 mRNA levels were shown to increase upon silking. Overall, the major findings of this thesis involved characterizing the ECP-3 protein found within tubuliform silks as well as determining the expression patterns for CRP-family members.

Page generated in 0.0485 seconds