• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurements of B(Ds -> lvl) and fDs using data collected from the BaBar experiment

Randle-Conde, Aidan January 2010 (has links)
This thesis presents measurements of the branching fractions B(Ds -> lvl) and mea- surements of the pseudoscalar decay constant, fDs , using all the data acquired at the BaBar detector at SLAC National Accelerator Laboratory, which were collected from September 1999 to April 2007, and comprised 531 fb-1. The following mea- surements are made: B(Ds -> eve) = (6:11 +/-0:38 +/- 0:33) * 10-3, B(Ds -> tvt) = (5:06 +/- 0:34 +/- 0:50) * 10-2 , and a limit B(Ds -> eve) < 1:46 * 10-4 is obtained. Using these measurements a value of fDs = 252 +/- 6 +/- 7 +/- 1MeV is obtained, where the first uncertainties account for the statistical limitations of the data, the second uncertainties account for the systematic uncertainties, and the third uncertainties account for uncertainties associated with other physical constants (dominated by the lifetime of the Ds meson).
2

Depth-registration of 9-component 3-dimensional seismic data in Stephens County, Oklahoma

Al-Waily, Mustafa Badieh 04 September 2014 (has links)
Multicomponent seismic imaging techniques improve geological interpretation by providing crucial information about subsurface characteristics. These techniques deliver different images of the same subsurface using multiple waveforms. Compressional (P) and shear (S) waves respond to lithology and fluid variations differently, providing independent measurements of rock and fluid properties. Joint interpretation of multicomponent images requires P-wave and S-wave events to be aligned in depth. The process of identifying P and S events from the same reflector is called depth-registration. The purpose of this investigation is to illustrate procedures for depth-registering P and S seismic data when the most fundamental information needed for depth-registration – reliable velocity data – are not available. This work will focus on the depth-registration of a 9-component 3-dimensional seismic dataset targeting the Sycamore formation in Stephens County, Oklahoma. The survey area – 16 square miles – is located in Sho-Vel-Tum oilfield. Processed P-P, SV-SV, and SH-SH wave data are available for post-stack analysis. However, the SV-data volume will not be interpreted because of its inferior data-quality compared to the SH-data volume. Velocity data are essential in most depth-registration techniques: they can be used to convert the seismic data from the time domain to the depth domain. However, velocity data are not available within the boundaries of the 9C/3D seismic survey. The data are located in a complex area that is folded and faulted in the northwest part of the Ardmore basin, between the eastern Arbuckle Mountains and the western Wichita Mountains. Large hydrocarbon volumes are produced from stratigraphic traps, fault closures, anticlines, and combination traps. Sho-Vel-Tum was ranked 31st in terms of proved oil reserves among U.S. oil fields by a 2009 survey. I will interpret different depth-registered horizons on the P-wave and S-wave seismic data volumes. Then, I will present several methods to verify the accuracy of event-registration. Seven depth-registered horizons are mapped through the P-P and SH-SH seismic data. These horizons show the structural complexity that imposes serious challenges on well drilling within the Sho-Vel-Tum oil field. Interval Vp/Vs – a seismic attribute often used as lithological indicator – was mapped to constrain horizon picking and to characterize lateral stratigraphic variations. / text

Page generated in 0.0362 seconds