1 |
Synthesis, Characterization and Properties of [(SnSe)1+δ]m(MoSe2)n and New Rare Earth (LaSe1-x)1.17(VSe2-y)n (n = 2-4) and [(EuSe)1+δ]1(VSe2)n (n = 1-3) Ferecrystal SystemsGunning, Noel 18 August 2015 (has links)
Solid state synthesis of layered, rotationally disordered intergrowths consisting of rock salt (MX) and hexagonal (TX2) constituents in various sequences [(MX)1+δ]m[TX2]n is carried out by developing structural and compositional prototypes of the desired product, using fine control of the elemental reactants and then annealing at low temperature to facilitate self-assembly. (M = Sn, La, Eu; T = V, Mo.)
The remarkable rotational disorder in these systems - in contrast to traditional misfits - and their proven applications in thermal, electrical and thermoelectric disciplines make them a useful group of materials for demonstrating control of reaction pathways of solid state reactions using low temperatures and short times.
The synthesized materials are structurally characterized using X-ray diffraction (XRD), X-ray reflectivity (XRR), and Scanning Transmission Electron Microscopy (STEM). Electrical characterization is carried out on patterned samples using the Van der Pauw method of resistivity and the Hall effect method. Composition of the samples is determined using wavelength dispersive electron probe microanalysis (EPMA). Time domain thermoreflectance is used to determine the cross plane thermal conductivity.
The family of [(SnSe)1.05]m(MoSe2)n (m = n = 1, 2, 3, 4), which possess the same composition but different unit cell thicknesses, shows that there is no correlation between c-axis unit cell thickness and cross plane thermal conductivity.
The family of structural isomers [(SnSe)1.05]4[MoSe2]4, [(SnSe)1.05]3[MoSe2]3[(SnSe)1.05]1[MoSe2]1, [(SnSe)1.05]3[MoSe2]2[(SnSe)1.05]1[MoSe2]2, [(SnSe)1.05]2[MoSe2]3[(SnSe)1.05]2[MoSe2]1,[(SnSe)1.05]2[MoSe2]1[(SnSe)1.05]1[MoSe2]2[(SnSe)1.05]1[MoSe2]1 and [(SnSe)1.05]2[MoSe2]2[(SnSe)1.05]1[MoSe2]1[(SnSe)1.05]1[MoSe2]1 have the same c-axis lattice thickness and absolute composition but have different numbers of [(SnSe)1.05]/[MoSe2] interfaces. Thermal conductivity studies carried out on these showed no correlation with the interface density.
(LaSe1-x)1.17(VSe2-y)n (n = 2, 3, 4) feature a family of compounds that self-assemble at higher than usual temperatures. They form non-stoichiometric moieties with unique structural proclivities including La vacancies and V interstitials compared to other ferecrystals or previous misfits. The designable electrical properties show evidence of charge transfer.
(EuSe)1+δ(VSe2)n (n = 1, 2, 3) is a family of materials that complements the investigation of Ln-based ferecrystals. They show evidence of multiple M oxidation states. These compounds highlight the use of rational design of structure and composition to tune properties.
This dissertation includes previously published and unpublished co-authored material. / 10000-01-01
|
2 |
Investigation Of Plasma Deposited Boron Nitride Thin FilmsAnutgan, Mustafa 01 August 2007 (has links) (PDF)
Hexagonal boron nitride (h-BN) thin films are deposited by plasma enhanced
chemical vapor deposition (PECVD). Effects of heat treatment and source gases on
the structure and physical properties are investigated. Chemical bonding is analyzed
in comparison with the better understood isoelectronic carbon compound, graphite. It
seems that the basic difference between h-BN and graphite arises from the different
electronegativities of boron and nitrogen atoms. Optical absorptions in UV-visible
range for crystalline and amorphous structures are outlined. The expressions used for
the evaluation of mechanical stress induced in thin films are derived. The deposited
films are considered to be turbostratic as they do not exhibit the characteristic optical
absorption spectra of a crystal. A new system, stylus profilometer, is implemented
and installed for thin film thickness and mechanical stress measurements. Hydrogen
atom density within the films, estimated from FTIR spectroscopy, is found to be a
major factor affecting the order and mechanical stress of the films. Heat treatment of
the films reduces the hydrogen content, does not affect the optical gap and slightly
increases the Urbach energy probably due to an increased disorder. Increasing the
nitrogen gas flow rate in the source gas results in more ordered films. The virtual
crystal of these films is detected to be unique. Relative bond concentrations of the constituent elements indicate a ternary boron-oxygen-nitrogen structure. The
physical properties of h-BN such as high resistivity and wide band gap seem suitable
for optoelectronic applications such as gate dielectrics in thin film transistors and
light emitting devices in the blue region.
|
Page generated in 0.0812 seconds