Spelling suggestions: "subject:"ubiquitin"" "subject:"selvitin""
1 |
Charakterizace interakce proteinu DDI2 pomocí NMR spektroskopie / Characterizing DDI2 protein interaction by solution NMRStaníček, Jakub January 2019 (has links)
Human DDI2 protein is a dimeric aspartic protease that has been recently found to play an important role in DNA damage repair and transcriptional regulation of the proteasome expression. Current insights into the mechanistic details of both functions are still quite limited. We have previously identified the human RAD23B protein to interact with the DDI2 protein. RAD23B also functions in DNA damage repair as part of the XPC complex that stimulates the nucleotide excision repair activity. Moreover, RAD23B participates as an adaptor protein in the process of protein degradation. Therefore, the interaction of DDI2 and RAD23B might have important implications for both known functions of DDI2. This work describes the DDI2 and RAD23B interaction on the structural level. Recombinant protein variants of both DDI2 and RAD23B proteins were prepared and the interaction was mapped by the affinity pull-down assay. Protein NMR titrations were further used to explore the interaction. Key words: ubiquitin-proteasome system, DNA damage repair, proteasome expression regulation, aspartyl protease, DDI2, NMR
|
2 |
Charakterizace interakce proteinu DDI2 pomocí NMR spektroskopie / Characterizing DDI2 protein interaction by solution NMRStaníček, Jakub January 2019 (has links)
Human DDI2 protein is a dimeric aspartic protease that has been recently found to play an important role in DNA damage repair and transcriptional regulation of the proteasome expression. Current insights into the mechanistic details of both functions are still quite limited. We have previously identified the human RAD23B protein to interact with the DDI2 protein. RAD23B also functions in DNA damage repair as part of the XPC complex that stimulates the nucleotide excision repair activity. Moreover, RAD23B participates as an adaptor protein in the process of protein degradation. Therefore, the interaction of DDI2 and RAD23B might have important implications for both known functions of DDI2. This work describes the DDI2 and RAD23B interaction on the structural level. Recombinant protein variants of both DDI2 and RAD23B proteins were prepared and the interaction was mapped by the affinity pull-down assay. Protein NMR titrations were further used to explore the interaction. Key words: ubiquitin-proteasome system, DNA damage repair, proteasome expression regulation, aspartyl protease, DDI2, NMR
|
3 |
Narušení metabolismu proteinů a jeho efekt na signalizaci cytokininůDufek, Martin January 2016 (has links)
Cytokinins are N6 substituted adenine derivatives that affect many aspects of plant growth and development. A multistep phosphorelay systém, including hybrid sensor kinases, histidinecontaining phosphotransfer proteins and two sets of response regulators, is the key part of cytokinin signaling. However, a recent evidence indicates a crucial role for the proteasomeubiquitin systém (UPS) in the cytokinin response. Here, in this thesis entitled 'Protein metabolism disruption and its effect on cytokinin signaling' the major protein degradation mechanisms are outlined and the present-day model of cytokinin metabolism and signaling is discussed. In the experimental part, the UPS-cytokinin interaction is probed in a growth response experiment, an LC-MS proteome analysis and by the datamining of previously published proteomics data. The results indicate an interesting dosage-dependent balance between cytokinin- and proteasome-mediated signaling, and a huge impact of proteasome inhibition on cytokinin response proteins. Key words: proteasome, ubiquitin, growth response, protein degradation, LC-MS, proteome
|
4 |
Role kapsidového proteinu virové hepatitidy B v hostitelském ubikvitin-proteazomovém systému / The role of Hepatitis B virus capsid protein in the host ubiquitin proteasome pathwayEliáš, Vratislav January 2018 (has links)
Hepatitis B virus (HBV) is a Hepadnaviridae virus infecting mammals. Its infection can result in an acute or chronic infection. Chronic infection can result in hepatocellular carcinoma and liver cirrhosis, potentially leading to death of the patient. HBV is a small 42 nm virus with a genome length of 3.2 kb encoding seven viral proteins. HBV Core protein (HBc) is a capsid forming protein which is pleiotropic in function. We have identified two ubiquitin ligases which could interact with this protein: F-box only protein 3 (FBXO3; E3 ubiquitin ligase) and Ubiquitin conjugating enzyme E2 O (UBE2O; E2/E3 ubiquitin ligase). By employing multiple methods we have confirmed these interactions. Co- immunoprecipitation and further western blot analysis unveiled multiple new insights into the ligases′ impact on HBc: FBXO3-mediated HBc polyubiquitination stimulation and UBE2O-mediated HBc monoubiquitination promotion. FBXO3's and UBE2O's role in HBV life cycle was investigated as well. By silencing the expression of FBXO3 and UBE2O respectively, we have observed changes in HBV replication levels: FBXO3 serves as an inhibitor of HBV replication, while UBE2O stimulates the course of HBV life cycle. Further investigation of these newly-discovered understandings may lead to a whole new HBV - host interplay...
|
5 |
Identifikace a funkční charakterizace nových substrátů cullin-RING ubikvitin ligáz / Novel substrates of cullin-RING ubiquitin ligases: identification and functional characterisationLiďák, Tomáš January 2022 (has links)
Selective protein degradation by the ubiquitin-proteasome system is essential for cellular homeostasis and the regulation of diverse biological processes. The selectivity of this system is imparted by hundreds of ubiquitin ligases that specifically recognise substrates and catalyse their ubiquitination, thereby targeting them for degradation. Among ubiquitin ligases, multisubunit cullin-RING ubiquitin ligases constitute the largest group. However, despite significant advances in understanding their assembly, regulation, and molecular architecture, the substrates and functions of most of them remain unknown. This thesis focuses on two ubiquitin ligases from the cullin-RING ubiquitin ligase 4 (CRL4) subfamily: CRL4DCAF4 and CRL4DCAF12 . To identify their candidate substrates and to address their biological roles, several different approaches have been employed. First, proteomic screening revealed a wide range of candidate substrates. Next, detailed characterisation of the identified interactions and exploration of the condition under which candidate substrates undergo degradation was performed. Finally, knockout human cell lines and mice with a targeted disruption of genes encoding DCAF4 and DCAF12 were generated to explore the physiological roles of CRL4DCAF4 and CRL4DCAF12 . In summary, the herein...
|
6 |
Ubikvitin-proteazomální systém ve studiích jeho inhibice a jeho využití v buněčné eseji měřící aktivitu virové proteázy / Ubiquitin-proteasome system in studies of its inhibition and its utilization in the cell-based assay measuring viral protease activityFürst, Eliška January 2020 (has links)
and keywords Abstract and keywords The ubiquitin-proteasome system (UPS) is a tightly and specifically regulated system of protein degradation in eukaryotic cells. Inhibition of an UPS component might represent a strategy to control human diseases, including cancer. Modulation of the UPS can also be employed in basic research strategies. This thesis deals with two independent yet methodologically connected research aims - first, to search for the target of the newly identified UPS inhibitor CBU79, and second, to develop a fluorescent cell-based reporter exploiting proteasomal degradation. In the first part of my work, previous findings regarding the molecular mechanisms of CBU79 inhibiton on the UPS were confirmed. In the next step, I characterized how the UPS inhibitor CBU79 affects protein synthesis using the metabolic labelling of proteins based on click chemistry. I also examined the cytotoxic effect of CBU79 treatment on different cell lines. Finally, I performed a CRISPR/Cas9 whole-genome enrichment screen with the aim to find a potential target of the inhibitor. I found out that CBU79 probably decreases levels of protein synthesis by triggering cellular signalling via the unfolded protein response (UPR). Using the screen, I found 22 potential targets of the CBU79 inhibitor that will be...
|
7 |
Role ubikvitin ligázy Fbxo38 v myší spermatogenezi / The role of Fbxo38 ubiquitin ligase in mouse spermatogenesisZobalová, Eliška January 2021 (has links)
Cullin-dependent ubiquitin ligases are responsible for the regulation of most cellular processes. Despite their mutated forms being the cause of many human diseases, their physiological roles are not sufficiently described. In the presented results, we focused on the physiological role of ubiquitin ligase SCFFBXO38 (SKP1-CULLIN1-FBXO38), whose mutated forms are responsible for the progression of distal neuropathy. Preparation of mouse model deficient in FBXO38 revealed that homozygous pups were born in a lower than expected ratio. Animals were growth-retarded, both at the level of the whole organism and individual organs, especially the liver and testes. Males with a deletion in the Fbxo38 gene had significantly lower reproductive capacity, which was associated with lower production of mature sperm and pathological changes in the structure of seminiferous tubules. We found that the FBXO38 protein is functionally expressed in Sertoli cells responsible for regulating spermatogenesis and seminiferous tubules integrity. Detailed analysis of spermatogenic populations revealed a defect at the level of spermatocyte differentiation. The dynamics of this differentiation depend on the hematotesticular barrier functional integrity formed by the intercellular junctions of Sertoli cells. We confirmed that the...
|
8 |
Úloha Trim15 a UCHL3 v regulaci buněčného cyklu pomocí ubikvitin signalizace. / The roles of Trim15 and UCHL3 in the ubiquitin-mediated cell cycle regulation.Jeřábková, Kateřina January 2019 (has links)
(ENGLISH) Ubiquitin signaling is a key regulatory mechanism for many important cellular processes such as transcription, differentiation and cell division. Cell division requires duplication of all genetic material during S-phase followed by its precise partitioning between two daughter cells during mitosis. Misregulation of the complex mitotic machinery may lead to aneuploidy and genomic instability, known drivers of tumorigenesis. Indeed, systematic genetic analysis of many cancer tissues over the last decades, indicates the presence of severe chromosome abnormalities in thousands of cancer tissue samples. In this work, I investigated the function of two components of ubiquitin signaling, the deubiquitinating enzyme UCHL3 and the E3 ubiquitin ligase TRIM15. The hypothesized role of E3 ligase TRIM15 in the cell cycle regulation could not be confirmed by our experiments, but I observed an effect on cell adhesion and motility instead. UCHL3 was identified using high-content visual siRNA screen, as a critical factor controlling genome segregation and integrity. Interestingly, it has been previously reported that UCHL3 levels are altered in various cancer types, especially colon cancer. My data demonstrate that UCHL3 drives proper alignment of chromosomes at the metaphase plate by facilitating...
|
Page generated in 0.0383 seconds