• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

UV disinfection in comparison with other small scale disinfection technologies for the treatment of domestic greywater

Komvuschara, Kanyarat January 2002 (has links)
No description available.
2

Moving Towards Water Security: Mitigating Emerging Contaminants in Treated Wastewater for Sustainable Reuse

Augsburger, Nicolas 04 1900 (has links)
Continuous increases in the interest and implementation of wastewater reuse due to intensified water stress has escalated the concerns of emerging contaminants. Among emerging contaminants there are microbial (antibiotic resistance) and chemical (pharmaceuticals) elements which have been shown to survive wastewater treatment. This dissertation aims to mitigate emerging contaminants by means of understanding and/or developing the appropriate disinfection strategies, with the intention to provide knowledge that would facilitate towards safe and sustainable water reuse. The first part of this thesis explored microbial risk component of antibiotic resistance. Antibiotic resistance genes are abundant in treated wastewater, and only pose a risk if taken up by potential pathogens through natural transformation. Our results showed that solar irradiation can double natural transformation rates, mediated by reactive oxygen species generation, which led to upregulation in DNA repair and competence genes in Acinetobacter baylyi ADP1. Treatment with UV-C254 nm irradiation also resulted in upregulation in DNA repair genes, nevertheless we observed a decrease in natural transformation rates. These results imply that direct damage of antibiotic resistance genes (ARG) could inhibit their spread and therefore risk, despite other factors contributing to the contrary. The next chapter in this dissertation postulated that the UV/H2O2 combination would be ideal to treat microbial and chemical emerging contaminants in effluent generated from an anaerobic membrane bioreactor. We demonstrated that at an optimal UV intensity and H2O2 concentration, we were able to achieve a 2 and 6-log reduction of the two antibiotic resistance genes and bacteria and used in this study, respectively, and more than 90% removal of the three pharmaceutical compounds. These observations suggest that UV/H2O2 has great potential in treating effluent with high nitrogen concentrations, preserving the fertilization benefit of AnMBR effluent. Overall, this dissertation revealed the potential of UV-based treatments for treated wastewater intended for reuse. Post-membrane processes effluent allows one to deploy UV-C254 nm to selectively target DNA and therefore ARB and ARG that may be still present in the treated wastewater. At the same time, coupling chemical oxidants with UV-C (i.e., UV AOP) would further enhance the means to simultaneously oxidize and degrade potentially harmful chemical contaminants.
3

Ultraviolet disinfection kinetics for potable water production.

Amos, Steve A. January 2008 (has links)
Irradiation with ultraviolet (UV) light is used for the disinfection of bacterial contaminants in the production of potable water, and in the treatment of selected wastewaters. However, efficacy of UV disinfection is limited by the combined effect of suspended solids concentration and UV absorbance. Limited published UV disinfection data are available that account for the combined effects of UV dose, suspended solids concentration and UV absorbance. This present lack of a rigorous quantitative understanding of the kinetics of UV disinfection limits process optimisation and wider application of UV treatment. The development and validation of an adequate model to describe UV disinfection kinetics presented in this thesis can therefore be justified by an increased confidence of reliability of design for UV disinfection. Using the published data of Nguyen (1999), four established model forms were assessed to account for the combined effect of suspended solids and/or soluble UV absorbing compounds, and UV dose on the efficacy of disinfection. The four model forms were: a log-linear form, Davey Linear-Arrhenius (DL-A), Square-Root (or Ratkowsky- Belehradek) and a general nth order Polynomial (nOP) form that was limited to a third order. Criteria for assessment of an adequate predictive model were established including: accuracy of predicted against observed values, percent variance accounted for (%V), and; appraisal of residuals. The DL-A model was shown to best fit the data for UV disinfection of Escherichia coli (ATCC 25922); followed by the nOP, log-linear and Square-Root forms. However, the DL-A form must be used in conjunction with a first-order chemical reaction equation, and was shown to predict poorly at high experimental values of UV dose (> 40,000 μWs cm-2). The DL-A model was not amenable to extrapolation beyond the observed UV dose range. To overcome the shortcomings of the Davey Linear-Arrhenius model synthesis of two new, non-linear model forms was undertaken. The two models were a modified exponentially damped polynomial (EDPm) and a form based on the Weibull probability distribution. The EDPm model has three terms: a rate coefficient (k), a damping coefficient (λ), and; a breakpoint dose ([dose]B). The rate coefficient governs the initial rate of disinfection prior to the onset of tailing, whilst the breakpoint is the UV dose that indicates the onset of tailing. The damping coefficient controls curvature in the survivor curve. The Weibull model has just two terms: a dimensionless scale parameter (β0), and; a shape parameter (β1). The scale parameter represents the level of disinfection in the tail of the survivor curve (as log10 N/N0), whilst the shape parameter governs the degree of curvature of the survivor data. Each model was assessed against the independent and published UV disinfection data of Nelson (2000) for treatment of faecal coliforms in a range of waste stabilisation pond effluents. Both models were found to be well suited to account for tailing in these UV disinfection data. Overall, the EDPm model gave a better fit to the data than the Weibull model form. To rigorously validate the suitability of the new EDPm and Weibull models a series of experimental trials were designed and carried out in a small-scale pilot UV disinfection unit. These trials included data determined specifically at low values of UV dose (<10,000 μWs cm-2) to fill the gap in the experimental data of Nguyen (1999). The experimental trials were carried out using a commercially available, UV disinfection unit (LC5TM from Ultraviolet Technology of Australasia Pty Ltd). Purified water contaminated with Escherichia coli (ATCC 25922) with a range of feed water flow rates (1 to 4 L min-1) was used. E. coli was selected because it is found in sewage, or water contaminated with faecal material, and is used as an indicator for the presence of enteric pathogens. E. coli should not be present in potable water. The hydrodynamics of water flow within the disinfection unit were established using digital video photography of dye trace studies with Methylene Blue. Nominal UV dose (2,700 to 44,200 μWs cm-2) was controlled by manipulating the flow rate of feed water through the UV disinfection unit (i.e. residence time), or by varying the exposed length of the control volume of the disinfection unit. The transmittance of the feed water (at 254 nm) was adjusted by the addition of either a soluble UV absorbing agent (International RoastTM instant coffee powder; 0.001 to 0.07 g L-1), or by addition of suspended matter as diatomaceous earth (Celite 503TM; 0.1 to 0.7 g L-1, with a median particle size of 23 μm). The absorbing agent (instant coffee), when in a comparable concentration, was found to produce a greater reduction in water transmission than the suspended material (Celite 503TM). It therefore contributed to a greater reduction in the initial rate of disinfection. Neither agent was found to produce a systematic reduction in the observed efficacy of disinfection however. Experimental results highlight that in the absence of soluble absorbing agents, or suspended solids, the initial rate of disinfection is higher when fewer viable bacteria are initially present. Both the new EDPm and Weibull forms gave a good fit to the experimental data. The EDPm better fitted the data on the basis of residual sum-of-squares (0.03 to 2.13 for EDPm cf. 0.16 to 4.37 for the Weibull form). These models are both of a form suitable for practical use in modelling UV disinfection data. Results of this research highlight the impact of water quality, as influenced by the combined effect of UV dose, suspended solids concentration and UV absorbance, on small-scale UV disinfection for potable water production. Importantly, results show that the concentration of soluble UV absorbing agents and suspended solids are not in themselves sufficient criteria on which to base assessment of efficacy of UV disinfection / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342403 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008
4

Ultraviolet disinfection kinetics for potable water production.

Amos, Steve A. January 2008 (has links)
Irradiation with ultraviolet (UV) light is used for the disinfection of bacterial contaminants in the production of potable water, and in the treatment of selected wastewaters. However, efficacy of UV disinfection is limited by the combined effect of suspended solids concentration and UV absorbance. Limited published UV disinfection data are available that account for the combined effects of UV dose, suspended solids concentration and UV absorbance. This present lack of a rigorous quantitative understanding of the kinetics of UV disinfection limits process optimisation and wider application of UV treatment. The development and validation of an adequate model to describe UV disinfection kinetics presented in this thesis can therefore be justified by an increased confidence of reliability of design for UV disinfection. Using the published data of Nguyen (1999), four established model forms were assessed to account for the combined effect of suspended solids and/or soluble UV absorbing compounds, and UV dose on the efficacy of disinfection. The four model forms were: a log-linear form, Davey Linear-Arrhenius (DL-A), Square-Root (or Ratkowsky- Belehradek) and a general nth order Polynomial (nOP) form that was limited to a third order. Criteria for assessment of an adequate predictive model were established including: accuracy of predicted against observed values, percent variance accounted for (%V), and; appraisal of residuals. The DL-A model was shown to best fit the data for UV disinfection of Escherichia coli (ATCC 25922); followed by the nOP, log-linear and Square-Root forms. However, the DL-A form must be used in conjunction with a first-order chemical reaction equation, and was shown to predict poorly at high experimental values of UV dose (> 40,000 μWs cm-2). The DL-A model was not amenable to extrapolation beyond the observed UV dose range. To overcome the shortcomings of the Davey Linear-Arrhenius model synthesis of two new, non-linear model forms was undertaken. The two models were a modified exponentially damped polynomial (EDPm) and a form based on the Weibull probability distribution. The EDPm model has three terms: a rate coefficient (k), a damping coefficient (λ), and; a breakpoint dose ([dose]B). The rate coefficient governs the initial rate of disinfection prior to the onset of tailing, whilst the breakpoint is the UV dose that indicates the onset of tailing. The damping coefficient controls curvature in the survivor curve. The Weibull model has just two terms: a dimensionless scale parameter (β0), and; a shape parameter (β1). The scale parameter represents the level of disinfection in the tail of the survivor curve (as log10 N/N0), whilst the shape parameter governs the degree of curvature of the survivor data. Each model was assessed against the independent and published UV disinfection data of Nelson (2000) for treatment of faecal coliforms in a range of waste stabilisation pond effluents. Both models were found to be well suited to account for tailing in these UV disinfection data. Overall, the EDPm model gave a better fit to the data than the Weibull model form. To rigorously validate the suitability of the new EDPm and Weibull models a series of experimental trials were designed and carried out in a small-scale pilot UV disinfection unit. These trials included data determined specifically at low values of UV dose (<10,000 μWs cm-2) to fill the gap in the experimental data of Nguyen (1999). The experimental trials were carried out using a commercially available, UV disinfection unit (LC5TM from Ultraviolet Technology of Australasia Pty Ltd). Purified water contaminated with Escherichia coli (ATCC 25922) with a range of feed water flow rates (1 to 4 L min-1) was used. E. coli was selected because it is found in sewage, or water contaminated with faecal material, and is used as an indicator for the presence of enteric pathogens. E. coli should not be present in potable water. The hydrodynamics of water flow within the disinfection unit were established using digital video photography of dye trace studies with Methylene Blue. Nominal UV dose (2,700 to 44,200 μWs cm-2) was controlled by manipulating the flow rate of feed water through the UV disinfection unit (i.e. residence time), or by varying the exposed length of the control volume of the disinfection unit. The transmittance of the feed water (at 254 nm) was adjusted by the addition of either a soluble UV absorbing agent (International RoastTM instant coffee powder; 0.001 to 0.07 g L-1), or by addition of suspended matter as diatomaceous earth (Celite 503TM; 0.1 to 0.7 g L-1, with a median particle size of 23 μm). The absorbing agent (instant coffee), when in a comparable concentration, was found to produce a greater reduction in water transmission than the suspended material (Celite 503TM). It therefore contributed to a greater reduction in the initial rate of disinfection. Neither agent was found to produce a systematic reduction in the observed efficacy of disinfection however. Experimental results highlight that in the absence of soluble absorbing agents, or suspended solids, the initial rate of disinfection is higher when fewer viable bacteria are initially present. Both the new EDPm and Weibull forms gave a good fit to the experimental data. The EDPm better fitted the data on the basis of residual sum-of-squares (0.03 to 2.13 for EDPm cf. 0.16 to 4.37 for the Weibull form). These models are both of a form suitable for practical use in modelling UV disinfection data. Results of this research highlight the impact of water quality, as influenced by the combined effect of UV dose, suspended solids concentration and UV absorbance, on small-scale UV disinfection for potable water production. Importantly, results show that the concentration of soluble UV absorbing agents and suspended solids are not in themselves sufficient criteria on which to base assessment of efficacy of UV disinfection / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342403 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008
5

Ultraviolet disinfection kinetics for potable water production.

Amos, Steve A. January 2008 (has links)
Irradiation with ultraviolet (UV) light is used for the disinfection of bacterial contaminants in the production of potable water, and in the treatment of selected wastewaters. However, efficacy of UV disinfection is limited by the combined effect of suspended solids concentration and UV absorbance. Limited published UV disinfection data are available that account for the combined effects of UV dose, suspended solids concentration and UV absorbance. This present lack of a rigorous quantitative understanding of the kinetics of UV disinfection limits process optimisation and wider application of UV treatment. The development and validation of an adequate model to describe UV disinfection kinetics presented in this thesis can therefore be justified by an increased confidence of reliability of design for UV disinfection. Using the published data of Nguyen (1999), four established model forms were assessed to account for the combined effect of suspended solids and/or soluble UV absorbing compounds, and UV dose on the efficacy of disinfection. The four model forms were: a log-linear form, Davey Linear-Arrhenius (DL-A), Square-Root (or Ratkowsky- Belehradek) and a general nth order Polynomial (nOP) form that was limited to a third order. Criteria for assessment of an adequate predictive model were established including: accuracy of predicted against observed values, percent variance accounted for (%V), and; appraisal of residuals. The DL-A model was shown to best fit the data for UV disinfection of Escherichia coli (ATCC 25922); followed by the nOP, log-linear and Square-Root forms. However, the DL-A form must be used in conjunction with a first-order chemical reaction equation, and was shown to predict poorly at high experimental values of UV dose (> 40,000 μWs cm-2). The DL-A model was not amenable to extrapolation beyond the observed UV dose range. To overcome the shortcomings of the Davey Linear-Arrhenius model synthesis of two new, non-linear model forms was undertaken. The two models were a modified exponentially damped polynomial (EDPm) and a form based on the Weibull probability distribution. The EDPm model has three terms: a rate coefficient (k), a damping coefficient (λ), and; a breakpoint dose ([dose]B). The rate coefficient governs the initial rate of disinfection prior to the onset of tailing, whilst the breakpoint is the UV dose that indicates the onset of tailing. The damping coefficient controls curvature in the survivor curve. The Weibull model has just two terms: a dimensionless scale parameter (β0), and; a shape parameter (β1). The scale parameter represents the level of disinfection in the tail of the survivor curve (as log10 N/N0), whilst the shape parameter governs the degree of curvature of the survivor data. Each model was assessed against the independent and published UV disinfection data of Nelson (2000) for treatment of faecal coliforms in a range of waste stabilisation pond effluents. Both models were found to be well suited to account for tailing in these UV disinfection data. Overall, the EDPm model gave a better fit to the data than the Weibull model form. To rigorously validate the suitability of the new EDPm and Weibull models a series of experimental trials were designed and carried out in a small-scale pilot UV disinfection unit. These trials included data determined specifically at low values of UV dose (<10,000 μWs cm-2) to fill the gap in the experimental data of Nguyen (1999). The experimental trials were carried out using a commercially available, UV disinfection unit (LC5TM from Ultraviolet Technology of Australasia Pty Ltd). Purified water contaminated with Escherichia coli (ATCC 25922) with a range of feed water flow rates (1 to 4 L min-1) was used. E. coli was selected because it is found in sewage, or water contaminated with faecal material, and is used as an indicator for the presence of enteric pathogens. E. coli should not be present in potable water. The hydrodynamics of water flow within the disinfection unit were established using digital video photography of dye trace studies with Methylene Blue. Nominal UV dose (2,700 to 44,200 μWs cm-2) was controlled by manipulating the flow rate of feed water through the UV disinfection unit (i.e. residence time), or by varying the exposed length of the control volume of the disinfection unit. The transmittance of the feed water (at 254 nm) was adjusted by the addition of either a soluble UV absorbing agent (International RoastTM instant coffee powder; 0.001 to 0.07 g L-1), or by addition of suspended matter as diatomaceous earth (Celite 503TM; 0.1 to 0.7 g L-1, with a median particle size of 23 μm). The absorbing agent (instant coffee), when in a comparable concentration, was found to produce a greater reduction in water transmission than the suspended material (Celite 503TM). It therefore contributed to a greater reduction in the initial rate of disinfection. Neither agent was found to produce a systematic reduction in the observed efficacy of disinfection however. Experimental results highlight that in the absence of soluble absorbing agents, or suspended solids, the initial rate of disinfection is higher when fewer viable bacteria are initially present. Both the new EDPm and Weibull forms gave a good fit to the experimental data. The EDPm better fitted the data on the basis of residual sum-of-squares (0.03 to 2.13 for EDPm cf. 0.16 to 4.37 for the Weibull form). These models are both of a form suitable for practical use in modelling UV disinfection data. Results of this research highlight the impact of water quality, as influenced by the combined effect of UV dose, suspended solids concentration and UV absorbance, on small-scale UV disinfection for potable water production. Importantly, results show that the concentration of soluble UV absorbing agents and suspended solids are not in themselves sufficient criteria on which to base assessment of efficacy of UV disinfection / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342403 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008
6

Applications and Acceptance of Solar UV Technologies for Drinking Water Disinfection in Low-Income Settings

Margaret M Busse (11547811) 13 October 2021 (has links)
<p>Access to potable water has been identified as a basic human right, yet it is estimated that 2.2 billion people worldwide do not have access to safely managed drinking water. Many of those without access live in regions of the world with abundant sunlight, which can be utilized both directly and indirectly to disinfect drinking water. Directly it can be used in solar water disinfection (SODIS) applications, and indirectly it can be collected by solar panels to power commercially available UV reactors. Herein, we study the potential for direct and indirect water disinfection technologies to be used and adopted in developing countries, with specific insight into their application in the Dominican Republic and Kenya.</p><p>The amount of available ambient solar UV was both measured and modelled to inform design and modelling of treatment systems, and to understand whether real-time monitoring of ambient UV is required for the operation of systems directly utilizing UV for disinfection. The model both over- and under-predicted measurements of ambient UV, and did so at inconsistent rates, most likely as a result of cloud cover. This indicates that real-time monitoring of ambient UV would most likely be needed for disinfection methods directly using solar UV for inactivation in order to ensure water was always dosed properly.</p><p>The amount of available ambient solar UV was input into a raytracing model (Photopia, LTI Optics) to simulate the amplification of solar spectral irradiance within a continuous-flow compound parabolic collector (CPC). This informed design improvements that allowed for an increase in flow rate through the system, which was supported by field testing of the reactor. Further, two commercial UV reactors, one utilizing a low-pressure (LP) lamp and the other utilizing an LED source, were tested in the lab to verify their ability to inactivate <i>S. typhimurium </i>LT2. The LP-based device outperformed the LED-based device, which was unable to achieve over 2-log<sub>10</sub> units of inactivation under any of the studied conditions.</p><p>A life cycle assessment was conducted to assess the environmental impact of the three studied UV reactors against traditional chlorination and water delivery methods. Chlorine had the lowest impact in every category under all of the studied conditions, but there have been many barriers reported on the lack of adoption of chlorine. So the next lowest impact technology was evaluated at the community scale, which was the LP reactor. Therefore, the LP reactor was installed in study communities in both the Dominican Republic and Kenya. In the Dominican Republic, the systems suffered from a lack of boots on the ground, and faced technical, social, and economic barriers to adoption. In Kenya, the project suffered from similar constraints, that did not allow for project assessment. This work not only addresses the barriers faced in both of these projects, but provides suggestions for improving similar projects in the future.</p>

Page generated in 0.1286 seconds