• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Multi-Component Excitation on the Sliding Response of Unanchored Components in Nuclear Facilities / Sliding Response Under Multi-Component Excitation

Arshad, Aamna 06 1900 (has links)
During an earthquake, unanchored equipment within a nuclear power plant facility can slide and interact with safety-critical systems and components. Previous studies on sliding have largely focused on the response due to unidirectional excitation, as computing the response of unanchored components in three dimensions can be complex and computationally expensive. As such, several prediction equations and a standardized approximate method as outlined in ASCE 4-16 have been developed to estimate the peak sliding displacement. This study investigates the effect of bidirectional horizontal interaction and the influence of vertical excitation on the sliding response of an unanchored object when the x, y, and z, components of earthquake excitation are applied simultaneously. The study also evaluates the approximate method detailed in ASCE 4-16. A suite of 40 floor acceleration histories obtained from response history analysis of a representative nuclear power plant facility are used as input for the sliding model. A wide range of friction coefficients is selected for analysis and the nonlinear sliding response of components is determined through the use of a Bouc-Wen type hysteretic model. Computed responses under uni-, bi- and tri-directional excitation reveal that the effect of bidirectional interaction and vertical excitation is greatest for sites with high shaking intensity. It is also concluded that the ASCE 4-16 approximate method is significantly overconservative in all cases. Additionally, the study expands the concept of multi-component excitation to intensity measures. Twelve intensity measures are selected and evaluated. It is found that most efficient intensity measures vary in efficiency depending on the coefficient of friction, and that the top intensity measures are not significantly affected by incorporating multiple components of excitation. / Thesis / Master of Applied Science (MASc) / Earthquakes can pose a huge risk to nuclear facilities. Unanchored objects within the facility may collide and interact with safety-critical equipment. Previous research on sliding behaviour lacks information on the response of an object subjected to earthquake excitation in both the horizontal plane and vertical direction simultaneously. Several prediction equations and an approximate method have been developed to estimate the sliding response as it becomes computationally expensive to solve. This research investigates the influence of simulatenous multi-component excitation on the sliding behaviour and evaluates the current standardized approximate method of estimating sliding displacement. Recommendations are given based on the friction coefficient between the object and the base. The research also explores which characteristics of earthquake ground motion (e.g. acceleration, velocity, energy) are most indicative of sliding behaviour.
2

Study of the Seismic Response of Unanchored Equipment and Contents in Fixed-Base and Base-Isolated Buildings

Nikfar, Farzad January 2016 (has links)
Immediate occupancy and functionality of critical facilities including hospitals, emergency operations centers, communications centers, and police and fire stations is of utmost importance immediately after a damaging earthquake, as they must continue to provide fundamental health, emergency, and security services in the aftermath of an extreme event. Although recent earthquakes have proven the acceptable performance of the structural system in such buildings, when designed according to recent seismic design codes, in many cases damage to the nonstructural components and systems was the main cause of disruption in their functionality. Seismic isolation is proven to be an effective technique to protect building structures from damaging earthquakes. It has been the method of choice for critical facilities, including hospitals in Japan and the United States in recent years. Seismic isolation appears to be an ideal solution for protecting the nonstructural components as well. While this claim was made three decades ago, the supporting research for freestanding (unanchored) equipment and contents (EC) is fairly new. With the focus on freestanding EC, this study investigates the seismic performance of sliding and wheel/caster-supported EC in fixed-base and base-isolated buildings. The study adopts a comparative approach to provide a better understanding of the advantages and disadvantages of using each structural system. The seismic response of sliding EC is investigated analytically in the first part of the thesis, while the response of EC supported on wheels/casters is examined through shake table experiments on two pieces of hospital equipment. The study finds base isolation to be generally effective in reducing seismic demands on freestanding EC, but it also exposes certain situations where isolation in fact increases demands on EC. Increasing the frictional resistance for sliding EC or locking the wheel/casters in the case of wheel/caster-supported EC is highly recommended for EC in base-isolated buildings to prevent excessive displacement demands. Furthermore, the study suggests several design probability functions that can be used by practicing engineers to estimate the peak seismic demands on sliding and wheel/caster-supported EC in fixed-base and base-isolated buildings. / Dissertation / Doctor of Philosophy (PhD)

Page generated in 0.0363 seconds