Spelling suggestions: "subject:"undercooked"" "subject:"undercooling""
1 |
Etude par dynamique moléculaire de l'alliage eutectique Au-Si en volume et en interaction avec un substrat de silicium / A molecular dynamics study of the bulk Au-Si eutectic alloy and in interation with substrates of silicon.Nguyen, Thi Le Thuy 11 September 2012 (has links)
Ce travail a pour but l'étude des propriétés structurales, dynamiques et thermodynamiques de l'alliage Au-Si dans l'état liquide et surfondu. Nous avons utilisé des simulations de dynamique moléculaire pour déterminer ces propriétés. Les interactions interatomiques nécessaires à ces simulations ont été construites dans un modèle de type MEAM. Dans une première partie de ce travail, nous avons montré que pour la composition eutectique, la structure locale de l'alliage liquide est caractérisée par une forte affinité entre l'or et le silicium, conduisant à un ordre chimique local très important qui ralentit la formation des motifs icosaédriques, caractéristique de l'ordre structural des systèmes métalliques surfondus. Nous avons également montré que cet ordre local influence fortement les propriétés thermodynamiques et dynamiques de cet alliage liquide. Une étude plus générale autour de la composition eutectique confirme les propriétés particulières du liquide à la composition eutectique. Dans une seconde partie, nous avons étudié les propriétés de l'alliage eutectique Au-Si en interaction avec des substrats de silicium. Nous avons mis en évidence une forte structuration du liquide à l'interface, le liquide ayant la propriété de reproduire sur une couche atomique la topologie de la surface du substrat en modifiant parfois sa composition chimique. Ce comportement très particulier est relié aux propriétés de surfusion observées expérimentalement dans ces systèmes. / The aim of this study is to compute structural, dynamic and thermodynamic properties in the liquid and undercooled states of Au-Si alloys using molecular dynamics simulations. The interactions are described via a modified embedded-atom model (MEAM) refined to take into account the liquid properties. In a first step, for the eutectic composition, the local structure is characterized by a strong Au-Si affinity, namely a well-pronounced chemical short-range order which leads to the slowing down of the formation of icosahedral local motifs in the undercooled regime. Moreover we have shown that this short range order strongly influences dynamic and thermodynamic properties of this liquid alloy. A more general study including compositions around the eutectic composition confirms the peculiar behavior of the eutectic alloy. In a second step, we study the behavior of the eutectic alloy in interaction with different substrates of silicon. We show that the liquid mimics the orientation of the substrate, using a one-atomic layer and a chemical composition that may differ from the eutectic one. This peculiar behavior is related to the undercooling properties experimentally observed in these systems.
|
2 |
On the Volume Changes during the Solidification of Cast Irons and Peritectic SteelsTadesse, Abel January 2017 (has links)
This thesis work deals with the volume changes during the solidification of cast irons and peritectic steels. The volume changes in casting metals are related to the expansion and/or contraction of the molten metal during solidification. Often, different types of shrinkage, namely macro- and micro-shrinkage, affect the casting quality. In addition to that, exposure of the metal casting to higher contraction or expansion during the solidification might also be related to internal strain development in samples, which eventually leads to surface crack propagation in some types of steel alloys during continuous casting. In consequence, a deep understanding of the mechanisms and control of the solidification will improve casting quality and production. All of the experiments during the entire work were carried out on laboratory scale samples. Displacement changes during solidification were measured with the help of a Linear Variable Displacement Transformer (LVDT). All of the LVDT experiments were performed on samples inside a sand mould. Simultaneously, the cooling curves of the respective samples during solidification were recorded with a thermocouple. By combining the displacement and cooling curves, the volume changes was evaluated and later used to explain the influence of inoculants, carbon and cooling rates on volume shrinkages of the casting. Hypoeutectic grey cast iron (GCI) and nodular cast iron (NCI) with hypo-, hyper- and eutectic carbon compositions were considered in the experiments from cast iron group. High nickel alloy steel (Sandvik Sanbar 64) was also used from peritectic steel type. These materials were melted inside an induction furnace and treated with different types of inoculants before and during pouring in order to modify the composition. Samples that were taken from the LVDT experiments were investigated using a number of different methods in order to support the observations from the displacement measurements: Differential Thermal Analysis (DTA), to evaluate the different phase present; Dilatometry, to see the effect of cooling rates on contraction for the various types of alloys; metallographic studies with optical microscopy; Backscattered electrons (BSE) analysis on SEM S-3700N, to investigate the different types of oxide and sulphide nuclei; and bulk density measurements by applying Archimedes' principle. Furthermore, the experimental volume expansion during solidification was compared with the theoretically calculated values for GCI and NCI. It was found that the casting shows hardly any shrinkage during early solidification in GCI, but in the eutectic region the casting expands until the end of solidification. The measured and the calculated volume changes are close to one another, but the former shows more expansion. The addition of MBZCAS (Si, Ca, Zr, Ba, Mn and Al) promotes more flake graphite, and ASSC (Si, Ca, Sr and Al) does not increase the number of eutectic cells by much. In addition to that, it lowers the primary austenite fraction, promotes more eutectic growth and decreases undercooled graphite and secondary dendritic arm spacing (SDAS). As a result, the volume expansion changes in the eutectic region. The expansion during the eutectic growth increase with an increase in the inoculant weight percentage. At the same time, the eutectic cells become smaller and increase in number. The effect of the inoculant and the superheat temperature shows a variation in the degree of expansion/contraction and the cooling rates for the experiments. Effective inoculation tends to homogenize the eutectic structure, reducing the undercooled and interdendritic graphite throughout the structure. In NCI experiments, it was found that the samples showed no expansion in the transversal direction due to higher micro-shrinkages in the centre, whereas in the longitudinal direction the samples shows expansion until solidification was complete. The theoretical and measured volume changes agreed with each other. The austenite fraction and number of micro-shrinkage pores decreased with increase in carbon content. The nodule count and distribution changes with carbon content. The thermal contraction of NCI is not influenced by the variation in carbon content at lower cooling rates. The structural analysis and solidification simulation results for NCI show that the nodule size and count distribution along the cross-sections at various locations are different due to the variation in cooling rates and carbon concentration. Finer nodule graphite appears in the thinner sections and close to the mold walls. A coarser structure is distributed mostly in the last solidified location. The simulation result indicates that finer nodules are associated with higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to lower cooling rate and a higher degree of microsegregation. As a result, this structural variation influences the micro-shrinkage in different parts. The displacement change measurements show that the peritectic steel expands and/or contracts during the solidification. The primary austenite precipitation during the solidification in the metastable region is accompanied by gradual expansion on the casting sides. Primary δ-ferrite precipitation under stable phase diagram is complemented by a severe contraction during solidification. The microstructural analysis reveals that the only difference between the samples is grain refinement with Ti addition. Moreover, the severe contraction in solidification region might be the source for the crack formation due to strain development, and further theoretical analysis is required in the future to verify this observation. / <p>QC 20170228</p>
|
Page generated in 0.059 seconds