• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of quantum Monte Carlo methods to homogeneous electron and electron-hole systems

Spink, Graham George January 2017 (has links)
The properties of the macroscopic world around us, and of which we are a part, are largely determined by the low energy, collective behaviour of many interacting particles, including the nuclei and, especially, the electrons present. Although the fundamental laws governing the behaviour of these many-body systems are believed to be known in principle, the practical solution of the equations of quantum mechanics remains a challenging area of research. This thesis is concerned with the application of quantum Monte Carlo methods to two model systems: the spin-polarised homogeneous electron gas, and a hole-doped electron gas. Electronic structure theory is briefly reviewed before discussing in more detail the quantum Monte Carlo methods used in this thesis. A study of the three-dimensional spin-polarised homogeneous electron gas (HEG) is then reported, where the relatively new technique of twist averaging is investigated in detail and accurate energies and pair correlation functions are obtained over densities $r_s = 0.5 – 20$ a.u. and the full range of spin-polarisation, allowing comparison with the Perdew-Zunger interpolation scheme used in local spin density approximation exchange-correlation functionals. Following this, an impurity is added to the electron gas in the form of a positively charged hole, and the interaction is studied. Relaxation energies, pair correlation functions and momentum densities are reported. Trion formation is observed over a range of carrier densities and electron-hole mass ratios in agreement with experiment. Isolated trions are also studied, where the diffusion Monte Carlo method is exact. Methodological innovations developed while carrying out this work are discussed, including a variance reduction technique for twist-averaged calculations and a new trial wave function for impurity-in-HEG calculations.
2

Exchange-Correlation Kernels Within Time-Dependent Density Functional Theory For Ground-State and Excited-State Properties

Nepal, Niraj, 0000-0002-7281-3268 January 2020 (has links)
The exact exchange-correlation kernel is a functional derivative of the exact time-dependent exchange-correlation (XC) potential with respect to the time-dependent density, evaluated at the ground-state density. As the XC potential is not known, the exact kernel is also unavailable. Therefore, it must be modeled either using many-body perturbation theory or by satisfying the exact constraints for various prototype systems such as the paradigm uniform electron gas (UEG). The random phase approximation (RPA) neglects the kernel, therefore, fails to provide the accurate ground- and excited-state properties for various systems from a simple uniform electron gas to more complex periodic ones. There are numerous corrections to RPA available, including kernel-corrected RPA, often called the beyond-RPA (bRPA) methods. In this work, we employed various bRPA methods for a diverse set of systems together with RPA. At first, we applied RPA based methods to study the phase stability of the cesium halides. Cesium halides phase stability is one of the stringent tests for a density functional approximation to assess its accuracy for dispersion interaction. Experimentally, CsF prefers the rocksalt (B1) phase, while the other halides CsCl, CsBr, and CsI prefer the cesium chloride (B2) phase. Without dispersion interaction, PBE and PBE0 predict all halides to prefer the B1 phase. However, all RPA based methods predict the experimental observations. The bRPA methods usually improve the quantitative prediction over RPA for the ground-state equilibrium properties of cesium halides. Next, we explored binary intermetallic alloys, where we showed that RPA successfully predicts the accurate formation energies of weakly bonded alloys. However, a kernel corrected RPA is needed when dealing with strongly bonded alloys with partially filled d-band metals. We utilized the renormalized ALDA (rALDA) and rAPBE kernel as bRPA methods. Exact constraints and appropriate norms such as the uniform electron gas are very useful to construct various approximations for the exchange-correlation potentials in the ground-state, and the exchange-correlation kernel in the linear-response theory within the TDDFT. These mathematical formulations not only guide us to formulate more robust nonempirical methods, but they also have more predictive power. We showed the importance of these constraints by calculating plasmon dispersion of the uniform electron gas using the non-local, energy-optimized (NEO) kernel using only a few constraints. More predictive power comes with more constraint satisfaction. As a result, we developed a new wavevector- and frequency-dependent exchange-correlation kernel that satisfies all the constraints that it should satisfy with a real frequency. It gives accurate ground-state correlation energy and describes the charge density wave in low-density UEG. It also predicts an accurate plasmon dispersion with a finite lifetime at wavevectors less than the critical one, where the plasmon dispersion meets the electron-hole continuum. / Physics

Page generated in 0.08 seconds