• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Viena jungtinė universalumo teorema / One joint universality theorem

Janulis, Kęstutis 01 July 2014 (has links)
Magistro darbo tikslas yra įrodyti Mišu teoremos analogą funkcijoms L(s,&#967;) ir &#950;(s,&#945;) su transcendenčiuoju parametru &#945;. / Let L(s,&#967;),s=&#963;+it, denote the Dirichlet L – function, and &#950;(s,&#945;) be the Hurwitz zeta-function with parameter &#945;,0<&#945;&#8804;1. We prove the following statment. Suppose that the number &#945; is transcendental, and K_1 and K_2 are compact subsets of strip D={ s&#8714; C: 1/2<&#963;<1} with connected complements. Let f_1 (s) be a continuous non-vanishing function on K_1 which is analytic in the interior of K_1, and f_2 (s) be a continuous function on K_2, and analytic in the interior of K_2. Then, for every &#949;>0, liminf&#9516;(T&#8594;&#8734;)&#8289;&#12310;1/T meas{&#964;&#8714;[0;T]: &#12310;sup&#12311;&#9516;(s&#8714;K_1 )&#8289;&#12310;|L(s+i&#964;,&#967;)-f_1 (s) |<&#949;&#12311;, sup&#9516;(s&#8714;K_2 )&#8289;&#12310;|&#950;(s+i&#964;,&#945;)-f_2 (s) |<&#949;&#12311;}&#12311;>0. There meas{A} denotes the Lebesgue measure of a measurable set A&#8834;R.

Page generated in 0.0717 seconds