• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studium metabolického sydromu na myším modelu:úloha lipidů v potravě, tukové tkáně a AMP-aktivované proteinovékinázy / Study of metabolic syndrome in mice model: roles of dietary lipids, adipose tissue and AMP-activated protein kinase

Medříková, Daša January 2011 (has links)
Obesity and associated metabolic disorders, e. g. metabolic syndrome, represent a considerable health threat for modern society. Due to sedentary lifestyle, high caloric intake and changes in composition of diet, prevalence of obesity is increasing worldwide. One of the possible causes contributing to higher prevalence of obesity in recent population could be the change of fatty acids (FA) composition of dietary lipids, with the shift in the content of n-6 and n-3 FA toward n-6 FA. In contrast to n-6 FA, n-3 FA are known for their anti-atherogenic, anti-obesogenic and anti-inflammatory properties. In our experiments in mice, the capability of naturally occurred and chemically modified n- 3 long chain polyunsaturated fatty acids (LC-PUFA) in prevention and reversal of specific parts of metabolic syndrome was demonstrated. A specific chemical derivative of docosahexaenoic acid was proven to be very effective in preventing and improving metabolic conditions of animals exposed to high-fat (HF) diet challenge. Further, the involvement of AMP-activated protein kinase (AMPK), a master regulator of lipid metabolism, in skeletal muscle thermogenesis induced by HF-feeding was investigated. Activation of AMPK in the HF-fed mice is most possibly caused by increased leptin levels and represents an important link...
2

Studium metabolického sydromu na myším modelu:úloha lipidů v potravě, tukové tkáně a AMP-aktivované proteinovékinázy / Study of metabolic syndrome in mice model: roles of dietary lipids, adipose tissue and AMP-activated protein kinase

Medříková, Daša January 2011 (has links)
Obesity and associated metabolic disorders, e. g. metabolic syndrome, represent a considerable health threat for modern society. Due to sedentary lifestyle, high caloric intake and changes in composition of diet, prevalence of obesity is increasing worldwide. One of the possible causes contributing to higher prevalence of obesity in recent population could be the change of fatty acids (FA) composition of dietary lipids, with the shift in the content of n-6 and n-3 FA toward n-6 FA. In contrast to n-6 FA, n-3 FA are known for their anti-atherogenic, anti-obesogenic and anti-inflammatory properties. In our experiments in mice, the capability of naturally occurred and chemically modified n- 3 long chain polyunsaturated fatty acids (LC-PUFA) in prevention and reversal of specific parts of metabolic syndrome was demonstrated. A specific chemical derivative of docosahexaenoic acid was proven to be very effective in preventing and improving metabolic conditions of animals exposed to high-fat (HF) diet challenge. Further, the involvement of AMP-activated protein kinase (AMPK), a master regulator of lipid metabolism, in skeletal muscle thermogenesis induced by HF-feeding was investigated. Activation of AMPK in the HF-fed mice is most possibly caused by increased leptin levels and represents an important link...

Page generated in 0.0362 seconds