• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Osteogenic Regulatory Mechanisms Activated By Pressure In Aortic Heart Valve

Gamez, Carol Andrea Pregonero 11 December 2009 (has links)
Calcific aortic valve disease (CAVD) is the most common cause of aortic valve failure and replacement in the elderly population, affecting 25% of the population over 65 years of age. Current pharmacological approaches for preventing the onset and progression of calcific aortic valve disease have not shown consistent benefits in clinical studies. Differentiation of valvular interstitial cells (VICs) into osteoblast–like cells is an integral step in the calcification process. Although clinical evidence suggests hypertension as a potential candidate contributing to the development of CAVD, the underlying molecular mechanisms that cause de-differentiation remain unclear. The present study investigates the role of elevated cyclic pressure in modulating osteoblast differentiation pathways in VICs in vitro. We used a combination of systems biology modeling and pathway-based analyses to identify novel genes and molecular mechanisms that are activated in valve tissue during exposure to elevated pressure conditions. Our results show that elevated pressure induces a gene expression pattern in valve tissue that is considerably similar to that seen in CAVD, underlining the key role of hypertension as an initiating factor in the onset of pathogenesis. In addition, our analysis revealed a set of genes that was not previously known to be regulated in valve tissue in a pressure dependent manner. Currently, the molecular mechanisms involved in CAVD and their associations with changes in local mechanical environment are poorly understood, and thus a better understanding of the cell based process mediating CAVD progression will improve our ability to develop potential medical therapies for this disease.
2

Pathology of Calcific Aortic Valve Disease: The Role of Mechanical and Biochemical Stimuli in Modulating the Phenotype of and Calcification by Valvular Interstitial Cells

Yip, Cindy Ying Yin 16 March 2011 (has links)
Calcific aortic valve disease (CAVD) occurs through multiple mutually non-exclusive mechanisms that are mediated by valvular interstitial cells (VICs). VICs undergo pathological differentiation during the progression of valve calcification; however the factors that regulate cellular differentiation are not well defined. Most commonly recognized are biochemical factors that induce pathological differentiation, but little is known regarding the biochemical factors that may suppress this process. Further, the contribution of matrix mechanics in valve pathology has been overlooked, despite increasing evidence of close relationships between changes in tissue mechanics, disease progression and the regulation of cellular response. In this thesis, the effect of matrix stiffness on the differentiation of and calcification by VICs in response to pro-calcific and anti-calcific biochemical factors was investigated. Matrix stiffness modulated the response of VICs to pro-calcific factors, leading to two distinct calcification processes. VICs cultured on the more compliant matrices underwent calcification via osteoblast differentiation, whereas those cultured on the stiffer matrices were prone to myofibroblast differentiation. The transition of fibroblastic VICs to myofibroblasts increased cellular contractility, which led to contraction-mediated, apoptosis-dependent calcification. In addition, C-type natriuretic peptide (CNP), a putative protective molecule against CAVD, was identified. CNP supressed myofibroblast and osteoblast differentiation of VICs, and thereby inhibited calcification in vitro. Matrix stiffness modulated the expression of CNP-regulated transcripts, with only a small number of CNP-regulated transcripts not being sensitive to matrix mechanics. These data demonstrate the combined effects of mechanical and biochemical cues in defining VIC phenotype and responses, with implications for the interpretation of in vitro models of VIC calcification and possibly disease devleopment. The findings from this thesis emphasize the necessity to consider both biochemical and mechanical factors in order to improve fundamental understanding of VIC biology.
3

Pathology of Calcific Aortic Valve Disease: The Role of Mechanical and Biochemical Stimuli in Modulating the Phenotype of and Calcification by Valvular Interstitial Cells

Yip, Cindy Ying Yin 16 March 2011 (has links)
Calcific aortic valve disease (CAVD) occurs through multiple mutually non-exclusive mechanisms that are mediated by valvular interstitial cells (VICs). VICs undergo pathological differentiation during the progression of valve calcification; however the factors that regulate cellular differentiation are not well defined. Most commonly recognized are biochemical factors that induce pathological differentiation, but little is known regarding the biochemical factors that may suppress this process. Further, the contribution of matrix mechanics in valve pathology has been overlooked, despite increasing evidence of close relationships between changes in tissue mechanics, disease progression and the regulation of cellular response. In this thesis, the effect of matrix stiffness on the differentiation of and calcification by VICs in response to pro-calcific and anti-calcific biochemical factors was investigated. Matrix stiffness modulated the response of VICs to pro-calcific factors, leading to two distinct calcification processes. VICs cultured on the more compliant matrices underwent calcification via osteoblast differentiation, whereas those cultured on the stiffer matrices were prone to myofibroblast differentiation. The transition of fibroblastic VICs to myofibroblasts increased cellular contractility, which led to contraction-mediated, apoptosis-dependent calcification. In addition, C-type natriuretic peptide (CNP), a putative protective molecule against CAVD, was identified. CNP supressed myofibroblast and osteoblast differentiation of VICs, and thereby inhibited calcification in vitro. Matrix stiffness modulated the expression of CNP-regulated transcripts, with only a small number of CNP-regulated transcripts not being sensitive to matrix mechanics. These data demonstrate the combined effects of mechanical and biochemical cues in defining VIC phenotype and responses, with implications for the interpretation of in vitro models of VIC calcification and possibly disease devleopment. The findings from this thesis emphasize the necessity to consider both biochemical and mechanical factors in order to improve fundamental understanding of VIC biology.
4

Culture and phenotype of canine valvular interstitial cells

Heaney, Allison Mahoney January 1900 (has links)
Master of Science / Department of Clinical Sciences / Barret J. Bulmer / Degenerative valve disease is the most common cardiac affliction facing our canine population. To date, canine research has focused on characterizing the disease itself and the histopathological features. Because of the ability to routinely repair or replace diseased valves in human medicine, research focus in humans has been on perfecting these techniques rather than elucidating etiology. The recent interest in valvular interstitial cells has been primarily due to their capacity to degrade collagen with the knowledge that disorganized collagen is a hallmark characteristic of degenerative valve disease. In this project, an easily reproducible cell culture protocol for canine valvular interstitial cells was developed. These cells were phenotyped by utilization of RT-PCR and immunocytochemistry. The use of these cells in a research project looking at response to endothelin exposure with and without protection of vitamin E is demonstrated as an example of the unlimited possibilities for these cells to elucidate not only the etiology of the disease process but also the response to therapy.

Page generated in 0.2083 seconds