• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detekce objektů v laserových skenech pomocí konvolučních neuronových sítí / Object Detection in the Laser Scans Using Convolutional Neural Networks

Marko, Peter January 2021 (has links)
This thesis is aimed at detection of lines of horizontal road markings from a point cloud, which was obtained using mobile laser mapping. The system works interactively in cooperation with user, which marks the beginning of the traffic line. The program gradually detects the remaining parts of the traffic line and creates its vector representation. Initially, a point cloud is projected into a horizontal plane, crating a 2D image that is segmented by a U-Net convolutional neural network. Segmentation marks one traffic line. Segmentation is converted to a polyline, which can be used in a geo-information system. During testing, the U-Net achieved a segmentation accuracy of 98.8\%, a specificity of 99.5\% and a sensitivity of 72.9\%. The estimated polyline reached an average deviation of 1.8cm.
2

3D mapování s využitím řídkých dat senzoru LiDAR / 3D Mapping from Sparse LiDAR Data

Veľas, Martin Unknown Date (has links)
Tato práce se zabývá návrhem nových algoritmů pro zpracování řídkých 3D dat senzorů LiDAR, včetně kompletního návrhu batohovího mobilního mapovacího řešení. Tento výzkum byl motivován potřebou takových řešení v oblasti geodézie, mobilního průzkumu a výstavby. Nejprve je prezentován iterační algoritmus pro spolehlivou registraci mračen bodů a odhad odometrie z měření 3D LiDARu. Problém řídkosti a velikosti těchto dat je řešen pomocí náhodného vzorkování pomocí Collar Line Segments (CLS). Vyhodnocení na standardní datové sadě KITTI ukázalo vynikající přesnost oproti známému algoritmu General ICP. Konvoluční neuronové sítě hrají důležitou roli ve druhé metodě odhadu odometrie, která zpracovává kódovaná data LiDARu do 2D matic. Metoda je schopna online výkonu, zatímco je zachována přesnost, když požadujeme pouze parametry posunu. To může být užitečné v situacích, kdy je vyžadován online náhled mapování a parametry rotace mohou být spolehlivě poskytnuty např. senzorem IMU. Na základě algoritmu CLS bylo navrženo a implementováno batohové mobilní mapovací řešení 4RECON. S využitím kalibrovaného a synchronizovaného páru LiDARů Velodyne a s nasazením řešení GNSS/INS s duální anténou, byl vyvinut univerzální systém poskytující přesné 3D modelování malých vnitřních i velkých otevřených prostředí. Naše hodnocení prokázalo, že požadavky stanovené pro tento systém byly splněny -- relativní přesnost do $5$~cm a průměrná chyba georeferencí pod $12$~cm. Poslední stránky obsahují popis a vyhodnocení další metody založené na konvolučních neuronových sítích -- navržených pro segmentaci země v mračnech bodů 3D LiDARu. Tato metoda překonala současný stav techniky v této oblasti a představuje způsob, jakým může být sémantická informace vložena do 3D laserových dat.

Page generated in 0.0393 seconds