1 |
Tunable techniques for robust high frequency analogue VLSIVoo, Thart Fah January 1999 (has links)
No description available.
|
2 |
Wave Component Sampling Method For High Performance Pipelined CircuitsSever, Refik 01 September 2011 (has links) (PDF)
In all of the previous pipelining methods such as conventional pipelining, wave pipelining, and mesochronous pipelining, a data wave propagating on the combinational circuit is sampled whenever it arrives to a synchronization stage. In this study, a new wave-pipelining methodology named as Wave Component Sampling Method (WCSM), is proposed. In this method, only the component of a wave, whose maximum and minimum delay difference exceeds the tolerable value, is sampled, and the other components continue to propagate on the circuit. Therefore, the total number of registers required for synchronization decreases significantly. For demonstrating the effectiveness of the proposed WCSM, an 8x8 bit carry save In all of the previous pipelining methods such as conventional pipelining, wave pipelining, and mesochronous pipelining, a data wave propagating on the combinational circuit is sampled whenever it arrives to a synchronization stage. In this study, a new wave-pipelining methodology named as Wave Component Sampling Method (WCSM), is proposed. In this method, only the component of a wave, whose maximum and minimum delay difference exceeds the tolerable value, is sampled, and the other components continue to propagate on the circuit. Therefore, the total number of registers required for synchronization decreases significantly. For demonstrating the effectiveness of the proposed WCSM, an 8x8 bit carry save adder (CSA) multiplier is implemented using 0.18µ / m CMOS technology. A generic transmission gate logic block with optimized output delay variation depending on the input pattern is designed and used in all of the sub blocks of the multiplier. Post layout simulation results show that, this multiplier can operate at a speed of 3GHz, using only 70 latches. Comparing with the mesochronous pipelining scheme, the number of the registers is decreased by 41% and the total power of the chip is also decreased by 9.5% without any performance loss. An ultra high speed full pipelined CSA multiplier with an operating frequency of 5GHz is also implemented with WCSM. The number of registers is decreased by 45%, and the power consumption of the circuit is decreased by 18.4% comparing with conventional or mesochronous pipelining methods. WCSM is also applied to different multiplier structures employing booth encoders, Wallace trees, and carry look-ahead adders. Comparing full pipelined 8x8 bit WCSM multiplier with the conventional pipelined multiplier, the number of registers in the implementation of booth encoder, Wallace tree, and carry look-ahead adder is decreased by 30%, 51%, and %62, respectively.
|
Page generated in 0.1203 seconds