• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a low-power interface circuitry for a vestibular prosthesis system

Toreyin, Hakan 21 September 2015 (has links)
The human vestibular system is responsible for maintaining balance and orientation, and stabilizing gaze during head motion. Head motion is sensed by vestibular sensors and encoded via the firing rate of vestibular neurons. Vestibular disorders can result in dizziness, imbalance, and disequilibrium. Currently there are no therapeutic options for individuals suffering from bilateral vestibular dysfunction. A potential solution is a vestibular prosthesis (VP). This device serves to replace peripheral vestibular organs by sensing angular motion, detected by semicircular canals (SCCs), and linear head motion, detected by the otolith organs, and selectively stimulating the corresponding vestibular afferents. An ideal VP will not only mimic the patient-dependent vestibular neural dynamics, but also consume low power. In this study, three energy-efficient ways to implement the motion encoding function required in a vestibular prosthesis are presented. Both analog and digital signal processing techniques to implement the vestibular signal processing functions are investigated.

Page generated in 0.0712 seconds