• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of amphetamine-induced behaviors in mice by the atypical vesicular glutamate transporter type 3 (VGLUT3) / Modulation des comportements induits par l'amphétamine chez la souris par le transporteur vésiculaire atypique de type 3 du glutamate (VGLUT3)

Mansouri Guilani, Nina 05 December 2017 (has links)
Toutes les drogues entrainent une libération accrue de dopamine dans une structure cérébrale nommée striatum. Cette structure est impliquée à la fois dans le contrôle moteur et dans les comportements motivés par les récompenses. Localement, les neurones striataux sont modulés par des interneurones cholinergiques (CINs). Les CINs ont pour particularité d’exprimer le transporteur vésiculaire du glutamate de type 3 (VGLUT3) en plus de celui de l’acétylcholine (VAChT). Par conséquent, ces interneurones sont capables de libérer du glutamate et de l’acétylcholine. Dans le striatum, VGLUT3 est également retrouvé dans certaines fibres sérotoninergiques. Chez des patients toxicomanes, le taux de mutation du gène codant VGLUT3 est augmenté. De plus, les souris qui n’expriment pas VGLUT3 (VGLUT3—/—) sont pré-sensibilisées à la cocaïne, et présentent des changements fonctionnels dans le striatum. VGLUT3 apparaît donc comme un régulateur de l’abus de drogue. Mes travaux de recherche ont consisté à caractériser l’effet d’un autre psychostimulant, l’amphétamine (AMPH), chez les souris VGLUT3—/—. Cela a permis de montrer que ces souris présentent une sensibilisation à l’AMPH, plus forte que les contrôles. A forte dose, les psychostimulants entrainent l’apparition de mouvements anormaux appelés stéréotypies. Nous avons observé que les souris VGLUT3—/— sont plus résistantes aux stéréotypies induites par l’AMPH. Une étude plus approfondie a montré que le glutamate libéré par les CINs semble intervenir dans ces stéréotypies. Ces résultats révèlent un rôle jusque-là insoupçonné du glutamate libéré par les CINs dans les mouvements anormaux, qui sont la signature de diverses pathologies. / All drugs of abuse yield a greater release of dopamine in a cerebral structure called striatum. This structure is involved in motor control, but also in behaviors motivated by reward. Locally, striatal neurons are modulated by cholinergic interneurons (CINs). CINs have the particularity to express the vesicular glutamate transporter type 3 (VGLUT3) on top of the one for acetylcholine (VAChT). Therefore, these interneurons have the ability to release both glutamate and acetylcholine. In the striatum, VGLUT3 is also found in some serotonergic fibers. A genetic study revealed that the mutation rate of the gene encoding VGLUT3 is increased in human addicts. Moreover, mice lacking VGLUT3 (VGLUT3—/—) are pre-sensitized to cocaine, and present functional alterations in the striatum. Thus, VGLUT3 appears as a regulator of drug abuse. My work consisted in characterizing the effects of another psychostimulant, amphetamine (AMPH), on VGLUT3—/— mice. This study revealed that VGLUT3—/— mice have a sensitization to AMPH, to a higher extent than control mice. At high dose, psychostimulants produce abnormal movements called stereotypies. We observed that VGLUT3—/— mice are more resistant to AMPH-induced stereotypies. Further investigation showed that the glutamate released by CINs seems involved in these stereotypies, but not the serotonergic source. Our result reveals a hitherto unsuspected role of the glutamate released by CINs in abnormal movements that are the hallmark of several pathologies.
2

Etude du rôle de VGLUT3, un transporteur vésiculaire du glutamate atypique, dans l'amygdale cérébrale dans le contexte de peur acquise / Study of an atypical vesicular glutamate transporter type 3 (VGLUT3) in the amygdalar network and particularly in acquired fear

Chabbah, Nida 20 October 2017 (has links)
Le trouble de stress post-traumatique (TSPT) est un trouble de type anxieux se déclenchant généralement suite à une expérience traumatisante. Des structures cérébrales telles que le cortex préfrontal, l’hippocampe ou encore l’amygdale, appartenant au réseau impliqué dans l’apprentissage et les mémoires émotionnelles, sont particulièrement altérées. Ce réseau étant extrêmement bien conservé au cours de l’évolution, la mise en place et le maintien des mémoires aversives peut être étudiés chez le rongeur par un paradigme pavlovien de peur conditionnée. Notre équipe a identifié une forte expression du transporteur vésiculaire du glutamate, VGLUT3 dans l’amygdale basolatérale (BLA). VGLUT3, comme les autres transporteurs vésiculaires du glutamate (VGLUTs), permet l’internalisation du glutamate dans les vésicules synaptiques. Il se distingue des autres VGLUTs par sa distribution et ses fonctions atypiques. Mes travaux de recherche nous ont permis d’identifier les populations neuronales exprimant VGLUT3 dans la BLA, et de définir son rôle dans les processus de mémoires aversives. La caractérisation anatomique a révélé que : 1/ VGLUT3 est uniquement présent dans une sous-population d’interneurones GABAergiques de la BLA, et 2/ VGLUT3 est exprimé dans les terminaisons cholinergiques et sérotoninergiques de la BLA, permettant d’identifier deux populations de neurones de projections possédant VGLUT3. L’étude du rôle fonctionnel de VGLUT3 a été réalisé par l’utilisation d’une approche génétique couplée à une approche virale pour invalider VGLUT3 dans les terminaisons GABAergiques, sérotoninergiques ou bien cholinergiques. Les souris présentant une inactivation constitutive de VGLUT3 montrent une généralisation au contexte et une extinction rapide. L’inactivation spécifique de VGLUT3 dans la BLA ou dans le cerveau antérieur basal – site d’origine des neurones de projections cholinergiques vers la BLA perturbent également les mémoires aversives, soulignant le rôle spécifique de VGLUT3 dans les réponses modulant la peur à travers sa présence dans l’amygdale basolatérale. Ces nouvelles données permettront de mieux comprendre le fonctionnement et le rôle de VGLUT3 dans les mémoires émotionnelles, et d’explorer son éventuelle implication dans des troubles de l’anxiété tel le TSPT. / Post-Traumatic Stress Disorder (PTSD) is an anxiety-like disorder usually triggered by a traumatic experience. Brain structures such as the prefrontal cortex, the hippocampus or the amygdala belonging to the learning and emotional memories network, are particularly affected. As this network is extremely well conserved during evolution, acquisition and consolidation of aversive memories can be studied by a Pavlovian fear conditioning paradigm in rodents. Our team has identified a strong expression of the vesicular glutamate transporter, VGLUT3 in the basolateral amygdala (BLA). VGLUT3 allows, like all vesicular transporters, neurotransmitter internalization, here the glutamate in synaptic vesicles. VGLUT3 is atypical because of its distribution and its functions. The aim of my work is to identify the neuronal population expressing VGLUT3 in the amygdala as well as its role in processing aversive memories. The anatomical characterisation revealed: 1/ VGLUT3 mRNA in BLA GABAergic interneurons, 2/ VGLUT3 protein in cholinergic and serotoninergic terminals in the BLA, identifying two populations of projecting neurons expressing VGLUT3. To decipher the functional role of VGLUT3, we used viral and genetic approaches to ablate VGLUT3 either in GABAergic, serotoninergic or cholinergic terminals. Mice lacking VGLUT3 constitutively show contextual generalization and rapid extinction. Specific inactivation of VGLUT3 in BLA impairs aversive memories, shedding light on a specific role of VGLUT3 in modulating fear responses through its presence in BLA interneurons. These new data will be discussed in the context of PTSD and would open a new direction for the development of therapeutic treatment.
3

DEVELOPMENT AND FUNCTIONS OF C-LOW-THRESHOLD MECHANORECEPTORS

Lou, Shan 08 June 2015 (has links)
Somatosensory neurons are essential for detecting diverse environmental stimuli, thus critical for survival of mammals. In order to achieve sensory modality specificity, many somatosensory subtypes emerge with various receptor and ion channel expression, as well as terminal morphologies. How the somatosensory system achieves such a high variety of neuronal subtypes is unknown. In this thesis, I used a newly discovered subtype, VGLUT3-expressing unmyelinated low-threshold mechanoreceptors (C-LTMRs), as a model to try to answer this question. C-LTMRs have been proposed to play a role in pleasant touch in humans or pain in mice. Previously, our lab has identified the Runt domain transcriptional factor Runx1 to be pivotal for the development of a cohort of sensory neurons such as pain related nociceptors, thermal receptors, as well as itch related pruriceptors. Here I found that Runx1 is also required to establish all known features associated with C-LTMRs. In search of the mechanism of how Runx1 controls C-LTMR development, I found that the zinc finger protein Zfp521 is predominantly expressed in C-LTMRs and its expression is Runx1 dependent. By generating and analyzing Zfp521 conditional knock out animals, I found Zfp521 is required for part of C-LTMR molecular identities and nerve terminal morphologies. Our studies suggest that Runx1 acts through Zfp521-dependent and Zfp521-independent pathways to specify C-LTMR identities. To study C-LTMR functions, we performed a series of behavioral analysis and found the loss of VGLUT3 and mechanosensitivities in C-LTMRs does not markedly affect acute or chronic mechanical pain measured from the hind paws, which argues against the proposed role of VGLUT3 in C-LTMRs in mediating mechanical pain in mice. In the future, we will continue to use our mutant mice to study physiological functions of C-LTMRs.
4

Role of Vesicular Glutamate Transporter 3 and Optineurin In Metabotropic Glutamate Receptor 5 Signaling

Ibrahim, Karim 06 February 2023 (has links)
Metabotropic glutamate receptor 5 (mGluR5) is a key regulator of numerous brain functions including memory, cognition, and motor behavior. Dysregulation of mGluR5 signaling is evident in Huntington's disease (HD) neuropathology, an inherited, neurodegenerative disease characterized with progressive deterioration in motor, cognitive, and psychiatric functions. In this context, two cellular proteins draw particular interest for this thesis: vesicular glutamate transporter 3 (VGLUT3) and optineurin (OPTN). VGLUT3 modulates glutamate release from selected neurons that are affected by HD, while OPTN is a mGluR5-interacting protein and contributes to neuronal vulnerability in HD. However, current evidence on their involvement in mGluR5 signaling and HD pathogenesis is still lacking. Using VGLUT3 knockout (VGLUT3⁻ᐟ⁻) mice, we showed that this transporter dynamically regulated glutamate receptor densities in different brain regions. Of note, VGLUT3 deletion upregulated mGluR5 in the cerebral cortex and the striatum, unlike the hippocampus which exhibited reduced mGluR5 cell surface densities. We then crossed VGLUT3⁻ᐟ⁻ mice with the zQ175 knock-in mouse model of HD (zQ175:VGLUT3⁻ᐟ⁻) to assess the impact of VGLUT3 transmission loss on HD progression. The longitudinal behavioral assessment revealed that VGLUT3 ablation rescued the deficits in motor coordination and short-term memory in both male and female zQ175 mice throughout 15 months of age. Furthermore, VGLUT3 deletion rescued striatal cell loss likely via activation of Akt and ERK1/2 cellular pathways, with no impact on total mutant huntingtin aggregation or the associated microgliosis. To delineate the role of OPTN in mGluR5 signaling, we employed a CRISPR/Cas9 OPTN-deficient cell line and global OPTN knockout mice. We demonstrated that OPTN was essential for mGluR5-mediated canonical signaling and ERK1/2 activation in both the striatal cell line, STHdh^Q7/Q7, and acute hippocampal slices. We then showed that OPTN deletion impaired autophagic machinery via GSK3β/ZBTB16 and mTOR/ULK1 signaling pathways downstream of mGluR5. This work offers novel insights into the molecular roles of VGLUT3 transmission and OPTN in mGluR5 signaling and provides a rationale for their targeting to therapeutically mitigate pathological mGluR5 signaling in HD.
5

On the development of inhibitory projection neurons

Simon, Shane Joseph January 2023 (has links)
High precision is critical for normal neural circuit function, but that precision is not innate. The location, strength, and number of inputs in a neural circuit are modified in early postnatal development in a process called refinement. The refinement of long-range excitatory projections is well-known, but less is known about the refinement of long-range inhibitory projections. What we do know about inhibitory projection refinement comes from the glycinergic medial nucleus to the trapezoid body to lateral superior olive (MNTB-LSO) projection of the auditory brainstem. During early postnatal life, the MNTB-LSO projection undergoes morphological and physiological refinement. Notably, the MNTB-LSO projection transiently expresses vesicular glutamate transporter 3 (VGLUT3) and synaptotagmin 1 (Syt1), transiently releases glutamate, and undergoes glutamate-dependent refinement. However, it remains uncertain whether glutamate release is specific to the auditory brainstem or could be a more general phenomenon of inhibitory projections. To shed light on this question, I investigated another inhibitory projection of the hindbrain, the GABAergic Purkinje projection of the cerebellum. The Purkinje projection shares key characteristics with the MNTB-LSO projection, including its inhibitory nature, location in the hindbrain, obvious topographic organization, heterogeneity of the target cells, and expression of VGLUT3 transcript and protein. In this thesis, I sought to determine: 1) whether the expression profile of VGLUT3 and Syt1 in the Purkinje projection matches that of the MNTB-LSO projection, and whether the Purkinje projection also releases glutamate, 2) whether the expression profile of synaptic vesicle protein 2 (SV2) isoforms, SV2B and SV2C, matches the expression profile of other synaptic vesicle proteins in the Purkinje and MNTB-LSO projection, and 3) whether the Purkinje projection undergoes postnatal morphological refinement like the MNTB-LSO projection. I found that like the MNTB-LSO projection, the Purkinje projection transiently expresses VGLUT3 and Syt1, releases glutamate in early postnatal life, and may undergo morphological refinement. / Dissertation / Doctor of Philosophy (PhD) / Everything you do, whether it be playing your favorite sport or begrudgingly reading this thesis, requires neural circuits, which are the basic functional unit of the nervous system. How neurons are wired together is crucial for their role in executing a task. But how these neurons fine-tune their connections – in a process called refinement, by getting the right connections to the right location, of the right strength, and of the right number – is an open-ended question in neuroscience. Refinement is more well-studied in excitatory projection neurons, but we know very little about how refinement occurs in inhibitory projection neurons. I compare some of the unusual characteristics of what we do know about inhibitory refinement in the auditory brainstem to another famous projection of the hindbrain, the Purkinje projection. Understanding more about the refinement of inhibitory projections gives key insights into how neural circuits function and how they facilitate complex behaviours.
6

Rôle du transporteur vésiculaire du glutamate de type 3 (VGLUT3) dans la réponse au stress hypoxique néonatal et la surdité DFNA25 / Atypical vesicular glutamate transporter type 3 (VGLUT3) function in the response to neonatal hypoxic stress, and the DFNA25 deafness

Miot, Stéphanie 24 February 2017 (has links)
Avant d'être libéré dans la fente synaptique, le glutamate est accumulé dans les vésicules présynaptiques par les transporteurs vésiculaires du glutamate (VGLUTs). Il existe 3 types de VGLUTs. VGLUT3 possède une distribution anatomique et des fonctions atypiques. Au sein du système nerveux central, VGLUT3 est exprimé dans des neurones glutamatergiques mais aussi non glutamatergiques, dans lesquels il assure les fonctions de co-transmission ou de synergie vésiculaire. On le retrouve notamment dans certains neurones sérotoninergiques du raphé. Au sein de l'oreille interne, VGLUT3 est l'unique VGLUT décrit dans les cellules ciliées internes (CCI). La sérotonine joue un rôle essentiel dans le contrôle respiratoire néonatal. En étudiant la respiration de souriceaux n'exprimant plus le VGLUT3, nous avons démontré le rôle de VGLUT3 dans l'adaptation au stress hypoxique néonatal. Une mutation de VGLUT3 a été mise en évidence dans une surdité humaine très proche cliniquement de la presbyacousie et appelée DFNA25. En étudiant le phénotype auditif de souris exprimant cette mutation, nous avons prouvé l'implication de cette mutation dans l'atteinte des CCI à l'origine de la surdité DFNA25. L'étude des processus biochimiques mis en jeu nous a permis d'envisager un rôle indirect de VGLUT3 dans l'activation de la mort autophagique, via la protéine Becline 1 et une possible interaction au sein de la voie de la Culline 3. L'ensemble de ce travail nous a permis de mettre en évidence un rôle de VGLUT3 dans l'adaptation aux conditions extrêmes telles que le développement néonatal ou le processus de vieillissement. Il ouvre de nouvelles perspectives sur les diverses fonctions des VGLUTs. / Before its release into synaptic cleft, glutamate is accumulated in presynaptic vesicles by vesicular glutamate transporters (VGLUTs). There are 3 types of VGLUTs. VGLUT3 presents atypical functions and anatomical distribution. In the central nervous system, VGLUT3 is expressed in glutamatergic and non glutamatergic neurons, in which it performs the co-transmission and the vesicular synergy. Particularly, we can observe VGLUT3 in serotoninergic neurons of raphe. In the inner ear, VGLUT3 is the unique VGLUT described in the inner hair cells (IHCs). Serotonin plays a key role in the neonatal respiratory control. By exploring the respiration of VGLUT3 knock out mice pumps, we have demonstrated the role of VGLUT3 in the response to neonatal hypoxic stress. One VGLUT3 mutation has been described in a human deafness clinically very close to presbycusis, the DFNA25 deafness. By studying the auditory phenotype of mice expressing this VGLUT3 mutation, we have proved the implication of this mutation in the IHCs impairment at the origin of DFNA25 deafness. Biochemical analysis have helped us to consider an indirect role of VGLUT3 in the autophagic death. Beclin 1 and a possible interaction between VGLUT3 and the Cullin3 pathways could be implicated. All of our results allowed us to highlight a role of VGLUT3 in the adaptation to extreme conditions like neonatal development or aging process. They open new perspectives on the various functions of VGLUTs.
7

Caractérisation d'une mutation humaine du transporteur vésiculaire du glutamate de type 3 (VGLUT3) : VGLUT3-p.A211V dans le système nerveux central de souris / Characterization of a human mutation of vesicular glutamate transporter type three (VGLUT3) : VGLUT3-p.A211V in mouse central nervous system

Ramet, Lauriane 20 November 2015 (has links)
Le glutamate est accumulé dans des vésicules synaptiques par des transporteurs vésiculaires du glutamate appelés VGLUT1-3. VGLUT1 et VGLUT2 sont utilisés par les neurones glutamatergiques «classiques» corticaux et sous-corticaux. VGLUT3 est présent dans des sous-populations de neurones utilisant d’autres neurotransmetteurs que le glutamate. Dans la cochlée, VGLUT3 permet la transmission glutamatergique entre les cellules ciliées internes et les neurones du nerf auditif. Le travail mené par l’équipe du Pr Puel a permis de découvrir l’implication de VGLUT3 dans une pathologie héréditaire de l’audition chez l’Homme. Une mutation p.A211V du gène codant VGLUT3 humain est responsable d’une surdité progressive à transmission autosomique. Il s’agit de la première mutation d’un VGLUT associé à une pathologie humaine. Mon travail de thèse a consisté à caractériser l’impact de cette mutation sur le SNC d’une lignée de souris exprimant cette mutation. Nous avons observé que cette mutation avait des effets complexes sur VGLUT3. La mutation p.A211V entraine une baisse marquée de l’expression de VGLUT3 dans les terminaisons nerveuses qui semble liée à une dégradation accélérée de VGLUT3. 20% d’expression résiduelle de VGLUT3 suffisent à assurer la majeure partie des fonctions du transporteur. L’activité de VGLUT3 ne semble donc pas être linéairement corrélée à son expression. De plus, la réduction de VGLUT3 au niveau des synapses semble s’accompagner d’une réduction du nombre de vésicules VGLUT3-positives et d’une réduction du nombre de copies de VGLUT3 par vésicule. Dans l’ensemble, mon travail de thèse a permis d’acquérir une meilleure connaissance de la régulation de VGLUT3. / Glutamate is the major excitatory neurotransmitter in the Central Nervous System (CNS) and is accumulated into synaptic vesicles by proton-dependent transporters named VGLUT1-3. VGLUT1 and VGLUT2-positive neurons are respectively found in cortical and subcortical glutamatergic neurons. In contrast, VGLUT3 is localized in a small population of neurons using other neurotransmitter than glutamate i.e.: cholinergic interneurons in the striatum, subpopulation of GABAergic interneurons in the hippocampus and cortex and serotoninergic neurons. Furthermore, VGLUT3 is also expressed by sensory inner hear cells (IHCs).In the cochlea, VGLUT3 accumulates glutamate into synaptic vesicles of the IHCs. A mutation of the gene that encodes VGLUT3 is responsible for a progressive, high-frequency deafness. It is the first mutation of a VGLUT that was demonstrated to be responsible for a human pathology.We investigated the effects of the p.A211V mutation on VGLUT3 in the CNS of a mouse line expressing this mutation. We observed that this mutation had complex effects on VGLUT3. The p.A211V mutation causes a 80% decrease of VGLUT3 in nerve endings. 20% residual expression of VGLUT3 is sufficient to fulfill most part of its functions. Contrary to prevailing views, VGLUT3 global activity is not linearly correlated to VGLUT3 quantity. Futhermore, VGLUT3 reduction seems to be associated with a diminution of VGLUT3-positive vesicles accompanied by an homogenous reduction of VGLUT3 copy number per vesicle.Overall, my thesis allowed to acquire a better understanding of the regulation of VGLUT3. This work will deepen our understanding of the involvement of VGLUTs in various pathologies.
8

Genetic Targeting and Analysis of Parvalbumin and VGLUT3 Expressing Inhibitory Interneurons / Analyse von Parvalbumin- und VGLUT3-exprimierenden Inhibitorischen Neuronen

Bredack, Christoph 02 May 2011 (has links)
No description available.

Page generated in 0.0675 seconds