• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Climatonomic modeling of the dry valleys of Victoria Land, Antarctica, with comparison to snow-covered regions

Riordan, Allen J. January 1977 (has links)
Thesis--Wisconsin. / Vita. Includes bibliographical references (leaves 122-127).
2

Volcanology of the Mawson Formation at Coombs and Allan Hills, South Victoria Land, Antarctica

Ross, Pierre-Simon, n/a January 2005 (has links)
The Jurassic Ferrar large igneous province of Antarctica contains significant mafic volcaniclastic deposits, underlying the Kirkpatrick flood basalts. In South Victoria Land, the mafic volcaniclastics are referred to as the Mawson Formation. At Coombs Hills, the Mawson is interpreted as filling a large vent complex, which was re-examined in detail to better understand vent-forming processes. Two contrasting types of cross-cutting volcaniclastic bodies were found in the complex, both of which are interpreted to have been forcefully emplaced from below into existing, non-consolidated debris. The first type consists of country rock-rich lapilli-tuff pipes. These are interpreted as fossilized remnants of subterranean debris jets which originated when phreatomagmatic explosions occurred near the walls or floor of the vent complex, causing fragmentation of both magma and country rock. The second type of cross-cutting body consists of basalt-rich tuff-breccias and lapilli-tuffs, some of which could have been generated by explosions taking place within pre-existing basalt-bearing debris, well away from the vent walls. Other basalt-rich zones, accompanied by domains of in situ peperite and coherent basalt, are inferred to have originated by less violent processes. At nearby Allan Hills, the Mawson can be divided into two informal members, m₁ and m₂. Member m₁ is exposed only at central Allan Hills, consists essentially of sedimentary material from the underlying Beacon Supergroup, and is interpreted as a [less than or equal to]180 m-thick debris avalanche deposit. Most megablocks in m₁ were derived from the late Triassic Lashly Formation, parts of which were probably only weakly consolidated in the Jurassic. Sandstone breccias dominate volumetrically over megablocks within the deposits. This indicates pervasive and relatively uniform fragmentation of the moving mass, and probably reflects the weak and relatively homogeneous nature of the material involved. The avalanche flowed into a pre-existing topographic depression carved into the Beacon sequence, and flow indicators reveal a northeastward movement. Sparse globular basaltic megablocks suggest that Ferrar intrusions played a role in triggering the avalanche. Member m₂, which is exposed at both central and southern Allan Hills, consists predominantly of metre-thick basaltic volcaniclastic layers that fall into three broad categories: (1) poorly sorted, coarse lapilli-tuff and tuff-breccia; (2) block-rich layers; (3) tuff and fine lapilli-tuff. The former type is interpreted as the deposits of high-concentration pyroclastic density currents (PDCs), probably formed during the collapse of phreatomagmatic eruption plumes. Occasional block-rich layers probably were formed by both ballistic fall from local vents and pyroclastic flows, and the finer-grained layers were probably deposited by dilute PDCs. Dilute, moist turbulent currents were also likely responsible for the generation and deposition of large ([less than or equal to]4.5 cm) rim-type accretionary lapilli. The thick layers are locally underlain by or interbedded with thin tuff ring-style volcaniclastic layers, and all the layers are underlain and invaded by basalt-rich tuff-breccias and lapilli-tuffs. COMPLETE REFERENCE: Ross, P.-S. (2005) Volcanology of the Mawson Formation at Coombs and Allan Hills, South Victoria Land, Antarctica. PhD Thesis, University of Otago, Dunedin, New Zealand, 400 pages, 46 tables, 162 figures, plus appendices.
3

Provenance Analysis of the Sperm Bluff Formation, southern Victoria Land, Antarctica

Savage, Jeni Ellen January 2005 (has links)
Beacon Supergroup rocks of probable Devonian age, containing conglomerate clasts of lithologies unknown in outcrop in southern Victoria Land (SVL) occur in the St Johns Range to Bull Pass Region, SVL, Antarctica. The Lower Taylor Group sedimentary rocks, herein called the Sperm Bluff Formation, unconformably rest on the regionally extensive Kukri Erosion Surface that truncates local basement. The basement complex includes three Plutonic Suites, Dry Valley (DV) 1a, DVIb and DV2 of the Granite Harbour Intrusives that intrude metasedimentary rocks of the Koettlitz Group. Allibone et al. (1993b) suggested a SVL terrane accretion event may have occurred about the same time as accretion of a terrane known as the Bowers terrane in northern Victoria Land (NVL) based on changing chemistry of the CambroOrdovician granitoids. Further, it is suggested that conglomerate clasts of the Sperm Bluff Formation may have been derived from this postulated terrane (Allibone et al., 1993b; and Turnbull et al., 1994). Following extensive fieldwork provenance studies and basin analysis of the sedimentary Sperm Bluff Formation are used here to test these ideas. The Sperm Bluff Conglomerate of Turnbull et al. (1994) is re-interpreted as the Sperm Bluff Formation and described using a lithofacies-based approach. The Sperm Bluff Formation is divided into six lithofacies including 1) Conglomerate Lithofacies; 2) Pebbly Sandstone Lithofacies; 3) Crossbedded Sandstone Lithofacies; 4) Parallelbedded Lithofacies; 5) Low-angle Crossbedded Lithofacies; and 6) Interbedded Siltstone/Sandstone Lithofacies. The intimate field association of the Conglomerate, Pebbly Sandstone and Crossbedded Sandstone Lithofacies ties them to the Conglomerate Lithofacies Association whereas the other three units are independent. The Conglomerate Lithofacies Association is interpreted to represent a wavedominated deltaic environment, based on the presence of broad channels, pervasive crossbedding, paleocurrent and trace fossil data. Both Parallel-bedded and Low-angle Crossbedded Sandstone Lithofacies are interpreted as a foreshore-shore face shallow marine setting on the basis of low-angle crossbeds and trace fossil assemblages. The Interbedded Siltstone and Sandstone Lithofacies is interpreted as an estuarine environment based on alternating siltstone/sandstone beds and the presence of flaser and lenticular bedding, small crossbedded dune sets, mud drapes, syneresis cracks and diverse paleocurrent directions. An estuarine setting is tentatively favoured over a lagoonal setting due to the presence of syneresis cracks small channels and the proximity to a river delta. I suggest that the Sperm Bluff Formation is likely a lateral correlative of the Altar Mt Formation of the Middle Taylor Group, in particular the Odin Arkose Member. This interpretation is based on arkosic nature of the sedimentary rocks, regional paleocurrent patterns, the presence of salmon pink grits at Gargoyle Turrets and trace fossil assemblages. The upper most lithofacies at Mt Suess, the Low-angle Crossbedded Sandstone Lithofacies that only occurs at this site is- suggested as a lateral correlative to the Arena Sandstone, which stratigraphically overlies the Altar Mt Formation, based on quartzose composition, clay matrix, stratigraphic position and trace fossils present. Provenance analysis was carried out on sedimentary rocks and conglomerate clasts using clasts counts of conglomerates, petrographic analysis of clasts, point counts of sandstones and clasts, geochemistry and V-Pb detrital zircon analysis. Conglomerate clasts lithologies include dominantly silicic igneous clasts and finely crystalline quartzite clast amongst other subordinate lithologies such as vein quartz, schist, schorl rock, gneiss and sandstone. Despite past identification of granitoid clasts in the Sperm Bluff Formation (Turnbull et al., 1994), none were found. Rhyolitic clasts of the Sperm Bluff Formation have compositions typical of highly evolved subduction related rocks, although they have undergone post-emplacement silicification. Wysoczanski et al. (2003) date rhyolite and tuff clasts between 497±17 Ma and 492±8 Ma, placing them within error of all three Dry Valley Magmatic Suites and removing the likelihood of correlation to NVL volcanic rocks. Petrographic analysis suggests they are components of a silicic magmatic complex. Chemically the volcanic clasts appear to represent a single magmatic suite (Sperm Bluff Clast Suite), and are clearly related to the Dry Valley Plutonic Suites. Although clasts are not constrained beyond doubt to one Suite, DV2 is the best match. Quartzite clasts of the Sperm Bluff Formation are too pure and old to be derived from a local source. Detrital zircon V-Pb ages for the quartzite suggest zircons were derived from the East Antarctic Craton, and that the quartzite source rocks were deposited prior to the Ross-Delamarian Orogeny. Quartzite with a similar age signature has not been identified; however, the Junction Formation sandstone of northwest Nelson has a similar age spectrum. Sandstones from the Sperm Bluff Formation indicate derivation from a felsic continental block provenance, which contain elements of volcanic, hyperbyssal and plutonic rocks. They are arkosic to quartzose in composition and conspicuously lack plagioclase. Detrital zircon analyses give a strong 500 Ma peak in all 3 samples, characteristic of a Ross-Delamarian Orogen source, with few other peaks. The dominance of a single peak is highly suggestive oflocal derivation. The sedimentary rocks of the Sperm Bluff Formation are interpreted to be derived predominantly from the basement rocks they now overlie. The presence of the regionally extensive Kukri Erosion Surface at the lower contact of the Beacon Supergroup rocks implies an intermediate source must have existed. This most likely contained all components of the formation. I suggest that the DV2 Suite was emplaced in a subsiding, extensional intra-arc setting. Erosion of the uplifted arc region probably occurred from Late Ordovician to Silurian times with deposition of sediments in a subsiding intra-arc basin. Erosion of the rhyolitic complex in this region probably occurred, however, it is likely that some was preserved. Inversion of this basin prior to the Devonian probably provided the means for these sediments to be deposited as the Sperm Bluff Fonnation.
4

Provenance Analysis of the Sperm Bluff Formation, southern Victoria Land, Antarctica

Savage, Jeni Ellen January 2005 (has links)
Beacon Supergroup rocks of probable Devonian age, containing conglomerate clasts of lithologies unknown in outcrop in southern Victoria Land (SVL) occur in the St Johns Range to Bull Pass Region, SVL, Antarctica. The Lower Taylor Group sedimentary rocks, herein called the Sperm Bluff Formation, unconformably rest on the regionally extensive Kukri Erosion Surface that truncates local basement. The basement complex includes three Plutonic Suites, Dry Valley (DV) 1a, DVIb and DV2 of the Granite Harbour Intrusives that intrude metasedimentary rocks of the Koettlitz Group. Allibone et al. (1993b) suggested a SVL terrane accretion event may have occurred about the same time as accretion of a terrane known as the Bowers terrane in northern Victoria Land (NVL) based on changing chemistry of the CambroOrdovician granitoids. Further, it is suggested that conglomerate clasts of the Sperm Bluff Formation may have been derived from this postulated terrane (Allibone et al., 1993b; and Turnbull et al., 1994). Following extensive fieldwork provenance studies and basin analysis of the sedimentary Sperm Bluff Formation are used here to test these ideas. The Sperm Bluff Conglomerate of Turnbull et al. (1994) is re-interpreted as the Sperm Bluff Formation and described using a lithofacies-based approach. The Sperm Bluff Formation is divided into six lithofacies including 1) Conglomerate Lithofacies; 2) Pebbly Sandstone Lithofacies; 3) Crossbedded Sandstone Lithofacies; 4) Parallelbedded Lithofacies; 5) Low-angle Crossbedded Lithofacies; and 6) Interbedded Siltstone/Sandstone Lithofacies. The intimate field association of the Conglomerate, Pebbly Sandstone and Crossbedded Sandstone Lithofacies ties them to the Conglomerate Lithofacies Association whereas the other three units are independent. The Conglomerate Lithofacies Association is interpreted to represent a wavedominated deltaic environment, based on the presence of broad channels, pervasive crossbedding, paleocurrent and trace fossil data. Both Parallel-bedded and Low-angle Crossbedded Sandstone Lithofacies are interpreted as a foreshore-shore face shallow marine setting on the basis of low-angle crossbeds and trace fossil assemblages. The Interbedded Siltstone and Sandstone Lithofacies is interpreted as an estuarine environment based on alternating siltstone/sandstone beds and the presence of flaser and lenticular bedding, small crossbedded dune sets, mud drapes, syneresis cracks and diverse paleocurrent directions. An estuarine setting is tentatively favoured over a lagoonal setting due to the presence of syneresis cracks small channels and the proximity to a river delta. I suggest that the Sperm Bluff Formation is likely a lateral correlative of the Altar Mt Formation of the Middle Taylor Group, in particular the Odin Arkose Member. This interpretation is based on arkosic nature of the sedimentary rocks, regional paleocurrent patterns, the presence of salmon pink grits at Gargoyle Turrets and trace fossil assemblages. The upper most lithofacies at Mt Suess, the Low-angle Crossbedded Sandstone Lithofacies that only occurs at this site is- suggested as a lateral correlative to the Arena Sandstone, which stratigraphically overlies the Altar Mt Formation, based on quartzose composition, clay matrix, stratigraphic position and trace fossils present. Provenance analysis was carried out on sedimentary rocks and conglomerate clasts using clasts counts of conglomerates, petrographic analysis of clasts, point counts of sandstones and clasts, geochemistry and V-Pb detrital zircon analysis. Conglomerate clasts lithologies include dominantly silicic igneous clasts and finely crystalline quartzite clast amongst other subordinate lithologies such as vein quartz, schist, schorl rock, gneiss and sandstone. Despite past identification of granitoid clasts in the Sperm Bluff Formation (Turnbull et al., 1994), none were found. Rhyolitic clasts of the Sperm Bluff Formation have compositions typical of highly evolved subduction related rocks, although they have undergone post-emplacement silicification. Wysoczanski et al. (2003) date rhyolite and tuff clasts between 497±17 Ma and 492±8 Ma, placing them within error of all three Dry Valley Magmatic Suites and removing the likelihood of correlation to NVL volcanic rocks. Petrographic analysis suggests they are components of a silicic magmatic complex. Chemically the volcanic clasts appear to represent a single magmatic suite (Sperm Bluff Clast Suite), and are clearly related to the Dry Valley Plutonic Suites. Although clasts are not constrained beyond doubt to one Suite, DV2 is the best match. Quartzite clasts of the Sperm Bluff Formation are too pure and old to be derived from a local source. Detrital zircon V-Pb ages for the quartzite suggest zircons were derived from the East Antarctic Craton, and that the quartzite source rocks were deposited prior to the Ross-Delamarian Orogeny. Quartzite with a similar age signature has not been identified; however, the Junction Formation sandstone of northwest Nelson has a similar age spectrum. Sandstones from the Sperm Bluff Formation indicate derivation from a felsic continental block provenance, which contain elements of volcanic, hyperbyssal and plutonic rocks. They are arkosic to quartzose in composition and conspicuously lack plagioclase. Detrital zircon analyses give a strong 500 Ma peak in all 3 samples, characteristic of a Ross-Delamarian Orogen source, with few other peaks. The dominance of a single peak is highly suggestive oflocal derivation. The sedimentary rocks of the Sperm Bluff Formation are interpreted to be derived predominantly from the basement rocks they now overlie. The presence of the regionally extensive Kukri Erosion Surface at the lower contact of the Beacon Supergroup rocks implies an intermediate source must have existed. This most likely contained all components of the formation. I suggest that the DV2 Suite was emplaced in a subsiding, extensional intra-arc setting. Erosion of the uplifted arc region probably occurred from Late Ordovician to Silurian times with deposition of sediments in a subsiding intra-arc basin. Erosion of the rhyolitic complex in this region probably occurred, however, it is likely that some was preserved. Inversion of this basin prior to the Devonian probably provided the means for these sediments to be deposited as the Sperm Bluff Fonnation.
5

Crustal motion in the Antarctic interior from a decade of global positioning system measurements

Willis, Michael J. 07 January 2008 (has links)
No description available.
6

In situ nitrogen (C₂H₂)-fixation in lakes of southern Victorialand, Antarctica

Allnutt, F. C. Thomas January 1979 (has links)
Nitrogenase fixation occurred in a number of habitats in and nearby several antarctic lakes. The observed acetylene reduction occurred in bluegreen algal mats in littoral areas that received maximal sunlight. The benthic bluegreen algal communities in reduced light under 5-6 m of permanent ice showed no detectable nitrogenase activity. The observed nitrogen fixation potential correlated with the presence of heterocystous bluegreen algae considered to be the major nitrogen fixing organisms in these habitats. The relatively low acetylene reduction rates suggest that a small but significant contribution of ammonia to these environments deficient in nitrogen may occur through nitrogen fixation. / Master of Science

Page generated in 0.065 seconds