Spelling suggestions: "subject:"vid"" "subject:"voie""
91 |
Dynamics and Transfers in two phase flows with phase change in normal and microgravity conditions / Dynamiques et Transferts dans les écoulements diphasiques avec changements de phase en gravité normal et microgravitéTrejo Peimbert, Esli 22 November 2018 (has links)
Les écoulements diphasiques avec ou sans changement de phase sont présents dans les applications terrestres et spatiales avec notamment le contrôle thermique des satellites par boucle diphasique, l’alimentation en propergol des moteurs de fusée et le traitement des eaux usées pour les missions d’exploration spatiale. Des expériences d’ébullition convective dans un tube chauffé avec du HFE7000 ont été menées en écoulement vertical ascendant au sol et en microgravité conditions afin de caractériser les régimes d’écoulements et de mesurer les transferts de chaleur, le taux de vide et les pertes de pression. Les mesures de taux de vide ont permis de caractériser la vitesse moyenne de la phase vapeur et l’épaisseur du film liquide en écoulement annulaire. En microgravité, l’épaisseur du film liquide et le frottement interfacial sont inférieurs aux conditions de gravité terrestre. La structure du film liquide a été caractérisée par des visualisation rapides. L’impact de la gravité, des vitesses superficielles du liquide et de la vapeur sur la célérité et la fréquence des ondes perturbatrices a été mis en évidence. Deux techniques de mesure ont été implémentées et comparées pour la mesure du coefficient d’échange de chaleur. En ébullition convective saturée pour des titres massiques supérieurs à 0.2, le transfert de chaleur est peu sensible à la gravité et en bon accord avec des corrélations de la littérature. En ébullition nucléée sous refroidie pour des titres inférieurs à 0.1, le transfert de chaleur est significativement plus faible en microgravité. / Two-phase flows with or without phase change are present in terrestrial and space applications like thermal control of satellites, propellant supply for launchers, and waste water treatment for space exploration missions. Flow boiling experiment with HFE7000 were conducted in a heated tube in vertical upward flow on ground and in microgravity conditions to collect data on flow patterns, pressure drops, heat transfers, void fraction. Void fraction measurements allowed to measure mean gas velocity and the liquid film thickness in annular flow. In microgravity condition, the liquid film thickness and the interfacial shear stress are significantly lower than in normal gravity. A detail analysis of the film structure was performed by image processing. The impact of gravity and liquid and vapour superficial velocities on the disturbance waves velocities and frequencies was investigated. Two different measurement techniques were used and compared to determine the heat transfer coefficient. For quality values greater than 0.2, HTC is not sensitive to gravity and is in good agreement with classical correlations of the literature. For qualities smaller than 0.1, in the subcooled nucleate boiling regime HTC is significantly smaller in microgravityconditions.
|
92 |
Modeling the behavior of inclusions in plastic deformation of steelsLuo, Chunhui January 2001 (has links)
This doctoral thesis presents a modeling method fordemonstrating the behavior of inclusions and their surroundingmatrix during plastic deformation of steels. Inclusions are inescapable components of all steels. Moreknowledge about their behavior in processes such as rolling andforging is necessary for carrying out the forming processes ina more proper way so that the properties of the final productare improved. This work is focussed on deformation ofinclusions together with void formation at the inclusion-matrixinterface. The topic of the work is analyzed by differentFE-codes. The relative plasticity index is considered as an importantmeasure for describing the deformability of inclusions. Theindex could be analyzed quantitatively, enabling a deeperunderstanding of the deformation mechanisms. The workingtemperature is found to be an important process parameter. Thisis very clear when the deformation of silicate inclusions in alow-carbon steel is studied during hot rolling. Here a narrowtransition temperature region exists, meaning that theinclusion behaves as non-plastic at lower temperatures and asplastic at higher. The results are in agreement withexperiments published by other authors. Regarding void formation, the simulations have been carriedout by utilizing an interfacial debonding criterion. Thedifference in yield stress between the matrix and the inclusionis one common reason for void initiation and propagation.During large compressive deformation the evolution of voidsgoes through a sequence of shapes, from convex with two cuspsto concave with three cusps together with self-welding lines.It is concluded that the formation of voids is alwaysassociated with a large relative sliding between the inclusionand the matrix. In order to study the local behavior of the material closeto inclusions during hot rolling a mesomechanical approach isused. Uncoupled macro- and micro- models have been developed.By means of the macro-model, the stress-strain historythroughout each sub-volume of the steel is evaluated. Thestress components or velocity fields are recorded with respectto time as history data. No consideration is taken to theexistence of inclusions. The micro-model, which includes bothinclusion and steel matrix, utilizes the stress components orthe velocity fields from the macro-model as boundaryconditions. <b>Keywords</b>: Inclusion; Steel; Plastic deformation; Void;Rolling; Forging; Finite Element; Mesomechanical approach.
|
93 |
Void fraction, pressure drop, and heat transfer in high pressure condensing flows through microchannelsKeinath, Brendon Louis 23 August 2012 (has links)
Flow mechanisms affect transport processes during condensation. Most studies on two-phase flow regimes are qualitative in nature, typically providing only information to guide the identification of the respective regimes and the transitions between them. These studies have, however, not yielded quantitative information to assist the development of pressure drop and heat transfer models. Such qualitative studies have also yielded results with considerable variability between investigators. A comprehensive investigation of flow mechanisms, void fraction, pressure drop and heat transfer during condensation of R404A in microchannels was conducted. In contrast to all prior investigations, high-speed video recordings and image analyses were used to directly measure void fraction, slug frequencies, vapor bubble velocity, vapor bubble dimensions and liquid film thicknesses in tube diameters ranging from 0.508 to 3.00 mm. Experiments were conducted at reduced pressures and mass fluxes ranging from 0.38 to 0.77 and 200 to 800 kg m-2 s-1, respectively, to document their influences on the condensation process at local vapor qualities ranging from 0 to 1. This information was used to develop a model for the void fraction in condensing flows. A complementing set of heat transfer and pressure drop measurements were conducted on the same geometries at similar conditions, and the void fraction model was used in conjunction with these measurements to develop improved heat transfer and pressure drop models. This comprehensive set of experiments and analyses yields a self-consistent and accurate treatment of high-pressure condensation in small hydraulic diameter geometries. Furthermore, the heat transfer model was found to agree well with condensing ammonia and carbon dioxide data that were obtained at significantly different conditions in different tube diameters. The added physical understanding of the condensation process and the models developed will serve as important building blocks for the design of microscale condensers and thermal systems.
|
94 |
Experimental Two-Phase Flow Characterization of Subcooled Boiling in a Rectangular ChannelEstrada Perez, Carlos E. 16 January 2010 (has links)
On the efforts to provide a reliable source of experimental information on turbulent
subcooled boiling ow, time resolved Particle Tracking Velocimetry (PTV) experiments
were carried out using HFE-301 refrigerant ow through a vertical rectangular
channel with one heated wall. Measurements were performed at liquid Reynolds numbers
of 3309, 9929 and 16549 over a wall heat flux range of 0.0 to 64.0 kW=m2. From
the PTV measurements, liquid two dimensional turbulence statistics are available,
such as: instantaneous 2-D velocity fields, time-averaged axial and normal velocities,
axial and normal turbulence intensities, and Reynolds stresses. The present results
agree with previous works and provide new information due to the 2-D nature of
the technique, for instance, this work shows that by increasing heat ux, the boiling
bubbles influence on the liquid phase is portrayed as a persistent increase of axial
velocity on regions close to the heater wall. This persistent increase on the axial
velocity reaches a maximum value attributed to the terminal bubble velocity. These
new observed phenomena must be considered for the development and improvement
of two-phase ow turbulence models. To this end, an extensive error analysis was also
performed with emphasis on the applicability of the PTV measurement technique on
optically inhomogeneous flows. The error quantification exhibited negligible optically
induced errors for the current conditions, making the data acquired in this work a
vast and reliable source.
|
95 |
Analytical and Experimental Study of Annular Two-Phase Flow Friction Pressure Drop Under MicrogravityNguyen, Ngoc Thanh 2009 December 1900 (has links)
Two-phase liquid-gas flow has a wide variety of applications in space, including active thermal control systems, high-power communications satellites, heat pumps and space nuclear reactors. Two-phase systems have many potential advantages over current single-phase systems due to reductions in system size, weight and power consumption. The mechanisms of pressure drop, heat transfer coefficients, void fractions, and flow regimes must be well understood under microgravity conditions in order to design reliable two-phase systems. The main objective of this present research is to develop a new mathematical model that can accurately predict the annular two-phase friction pressure drop to optimize the design of two-phase systems. The two-phase flow tests were conducted aboard the NASA KC-135 aircraft by the Interphase Transport Phenomena (ITP) group from Texas A&M University. The two-phase flow pressure drops were measured across a single transparent test section 12.7 mm ID and 1.63 m long in annular regimes under microgravity conditions during two flight campaigns. Different from previous work, this was the first time both the void fraction and the film thickness were measured under microgravity conditions. The empirical correlations for the interfacial friction factor and void fraction were developed from 57 experimental data using a linear least squares regression technique. The annular two-phase friction pressure drop can be predicted by the new mathematical model requiring only knowledge of the length and diameter of the tube, liquid and vapor mass flow rates, and properties of the working fluid. In addition, the new mathematical model was validated using Foster-Miller & ITP data collected over twelve flights aboard the KC-135 with working fluid R-12 (77 data points), Sundstrand data collected aboard the KC-135 with working fluid R-114 (43 data points) and Zhao and Rezkallah data aboard the KC-135 with working fluid water and air (43 data points). Compared with the LockhartMartinelli model, Wheeler model, Chen model and homogeneous model, the new mathematical model is the optimal model for predicting the two-phase friction pressure drop in annular regimes. The majority of the data falls within +-20% of the proposed correlation and the average error is 12%.
|
96 |
Compaction Effects on Uniformity, Moisture Diffusion, and Mechanical Properties of Asphalt PavementsKassem, Emad Abdel-Rahman Ahmed 2008 December 1900 (has links)
Field compaction of asphalt mixtures is an important process that influences
performance of asphalt pavements; however there is very little effort devoted to evaluate
the influence of compaction on the uniformity and properties of asphalt mixtures. The
first part of this study evaluated relationships between different field compaction patterns
and the uniformity of air void distribution in asphalt pavements. A number of projects
with different asphalt mixture types were compacted, and cores were taken at different
locations from these projects. The X-ray Computed Tomography (X-ray CT) system was
used to capture the air void distributions in these cores. The analysis results have revealed
that the uniformity of air void distribution is highly related to the compaction pattern and
the sequence of different compaction equipment. More importantly, the efficiency of
compaction (reducing air voids) at a point was found to be a function of the location of
this point with respect to the compaction roller width. The results in this study supported
the development of the "Compaction Index (CI)," which quantifies the degree of field
compaction. The CI is a function of the number of passes at a point and the position of
the point with respect to the compaction roller width. This index was found to correlate
reasonably well with percent air voids in the pavement. The CI calculated from field
compaction was also related to the slope of the compaction curve obtained from the
Superpave gyratory compactor. This relationship offers the opportunity to predict field
compactability based on laboratory measurements. The compaction of longitudinal joints
was investigated, and recommendations were put forward to improve joint compaction.
The air void distributions in gyratory specimens were related to the mixture mechanical
properties measured using the Overlay and Hamburg tests. The second part of this study focused on studying the relationship between air
void distribution and moisture diffusion. A laboratory test protocol was developed to
measure the diffusion coefficient of asphalt mixtures. This important property has not
measured before. The results revealed that the air void phase within the asphalt mixtures
controls the rate of moisture diffusion. The measured diffusion coefficients correlated
well with the percent and size of connected air voids. The measured diffusion coefficient
is a necessary parameter in modeling moisture transport and predicting moisture damage
in asphalt mixtures.
The last part of this study investigated the resistance of asphalt mixtures with
different percent air voids to moisture damage by using experimental methods and a
fracture mechanics approach that accounts for fundamental material properties.
|
97 |
Reconstruction, characterization, modeling and visualization of inherent and induced digital sand microstructuresLu, Ye 15 November 2010 (has links)
Strain localization, the phenomenon of large shear deformation within thin zones of intensive shearing, commonly occurs both in-situ and in the laboratory tests on soils specimens. The intriguing mechanism of strain localization and how it will affect the general behavior of soil specimens have been investigated by many researchers. Some of the efforts have focused on finding the links between material properties (void space, fabric tensor) and mechanical behavior (stress, strain, volumetric strain). In the last ten years, several extensive studies have been conducted at Georgia Tech to investigate the mechanism of strain localization and link the microstructural properties with the engineering behavior of Ottawa sands. These studies have included 2-D and 3-D characterization of soil microstructures under either triaxial or biaxial shearing conditions. To extend and complement these previous studies, the current study focuses particularly on 3-D reconstruction, analysis and modeling of specimens of Ottawa sand subject to triaxial or biaxial loading. The 3-D microstructure of biaxial specimens was reconstructed using an optical microscopy based montage and serial sectioning technique. Based on the reconstructed 3-D digital volumes, a series of 2-D and 3-D characterizations and analyses, including local void ratio distributions, extent of shear bands, influence of soil fabrics and packing signature effects, were conducted. In addition to the image analysis based reconstruction and characterization, the 3-D discrete element method (DEM) code, PFC3D, was used to explore both biaxial and triaxial shear related soil behaviors at the global and particulate scale. Void ratio distributions, coordination numbers, particle rotations and displacements, contact normal distributions and normal contact forces as well as global stress and strain responses were investigated and analyzed to help understand the mechanism of strain localization. The microstructures of the numerical specimens were also characterized in the same way as the physical specimens and similar strain localization patterns were identified. Combined with the previous related studies, the current study provides new insights into the strain localization phenomenon of Ottawa sands subject to triaxial and biaxial loading. In addition, the reconstructed digital specimens were subject to a series of dissection studies which revealed exciting new insights into "microstructure signatures" which exist at both meso and micro scales within the real and simulated specimens.
|
98 |
Construction and execution of experiments at the multi-purpose thermal hydraulic test facility TOPFLOW for generic investigations of two-phase flows and the development and validation of CFD codes - Final reportKrepper, E., Weiß, F.-P., Manera, A., Shi, J.-M., Zaruba, A., Lucas, D., Al Issa, S., Beyer, M., Schütz, P., Pietruske, H., Carl, H., Höhne, T., Prasser, H.-M., Vallée, C. 31 March 2010 (has links) (PDF)
The works aimed at the further development and validation of models for CFD codes. For this reason, the new thermal-hydraulic test facility TOPFLOW was erected and equipped with wire-mesh sensors with high spatial and time resolution. Vertical test sections with nominal diameters of DN50 and DN200 operating with air-water as well as steam-water two-phase flows provided results on the evaluation of flow patterns, on the be¬haviour of the interfacial area as well as on interfacial momentum and heat transfer. The validation of the CFD-code for complex geometries was carried out using 3D void fraction and velocity distributions obtained in an experiment with an asymmetric obstacle in the large DN200 test section. With respect to free surface flows, stratified co- and counter-current flows as well as slug flows were studied in two horizontal test channels made from acrylic glass. Post-test calculations of these experiments succeeded in predicting the slug formation process. Corresponding to the main goal of the project, the experimental data was used for the model development. For vertical flows, the emphasis was put on lateral bubble forces (e.g. lift force). Different constitutive laws were tested using a Multi Bubble Size Class Test Solver that has been developed for this purpose. Basing on the results a generalized inhomogeneous Multiple Size Group (MUSIG) Model has been proposed and implemented into the CFD code CFX (ANSYS). Validation calculations with the new code resulted in the conclusion that particularly the models for bubble coalescence and fragmentation need further optimisation. Studies of single effects, like the assessment of turbulent dissipation in a bubbly flow and the analysis of trajectories of single bubbles near the wall, supplied other important results of the project.
|
99 |
Aufbau und Durchführung von Experimenten an der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW für generische Untersuchungen von Zweiphasenströmungen und die Weiterentwicklung und Validierung von CFD-Codes - AbschlussberichtBeyer, M., Al Issa, S., Zaruba, A., Schütz, P., Pietruske, H., Shi, J.-M., Carl, H., Manera, A., Höhne, T., Vallée, C., Weiß, F.-P., Krepper, E., Prasser, H.-M., Lucas, D. 31 March 2010 (has links) (PDF)
Ziel der Arbeiten war die Weiterentwicklung und Validierung von Modellen in CFD-Codes. Hierzu wurde am FZD die thermohydraulische Versuchsanlage TOPFLOW aufgebaut und mit räumlich und zeitlich hochauflösenden Gittersensoren ausgestattet. Vertikale Teststrecken mit Nenndurchmessern von DN50 bzw. DN200 für Luft/Wasser- sowie Dampf/Wasser-Strömungen lieferten Ergebnisse zur Entwicklung von Strömungsformen, zum Verhalten der Zwischenphasengrenzfläche sowie zum Wärme- und Impulsaustausch zwischen den Phasen. Die Validierung des CFD-Codes in komplexen Geometrien erfolgte anhand von 3D Gasgehalts- und Geschwindigkeitsfeldern, die bei Umströmung eines asymmetrischen Hindernisses auftreten, das in der Teststrecke DN200 eingebaut war. Im Hinblick auf Strömungen mit freier Oberfläche untersuchte das FZD in zwei horizontalen Acrylglas-Kanälen geschichtete Zweiphasenströmungen im Gleich- bzw. Gegenstrom sowie Schwallströmungen. Bei den Nachrechnungen dieser Versuche gelang die Simulation der Schwallentstehung. Entsprechend des Projektziels wurden die experimentellen Ergebnisse zur Modellentwicklung genutzt. Bei vertikalen Strömungen stand die Wirkung der lateralen Blasenkräfte (z.B. Liftkraft) im Vordergrund. Zum Test unterschiedlicher Modellansätze wurde hierzu ein Mehrblasenklassen-Testsolver entwickelt und genutzt. Darauf aufbauend wurde ein neues Konzept für ein Mehrblasenklassenmodell, das Inhomogene MUSIG Modell erarbeitet und in den kommerziellen CFD Code CFX (ANSYS) implementiert. Bei Validierungsrechnungen zeigte sich, dass vor allem die Blasenkoaleszenz- und -zerfallsmodelle weiter optimiert werden müssen. Untersuchungen zu Einzeleffekten, wie z.B. die Abschätzung von Turbulenzkoeffizienten und die Analyse der Trajektoren von Einzelblasen in unmittelbarer Wandnähe, lieferten weitere wichtige Ergebnisse des Projekts.
|
100 |
Transiente Kondensationsversuche an einem Notkondensator - EinzelrohrZschau, Jochen, Prasser, Horst-Michael, Gocht, Thoralf, Böttger, Arnd 31 March 2010 (has links) (PDF)
Die in diesem Bericht vorgestellten Experimente betreffen die Kondensation von Dampf in horizontalen bzw. leicht geneigten Rohren bei hohen auftretenden Temperaturdifferenzen bis zu über 200 K. Weitere Besonderheiten sind die detaillierte Untersuchung des transienten Verhaltens eines nichtkondensierbaren Gases mit einer neuartigen Messtechnik sowie die Ermittlung des Einflusses des Gases auf den Kondensationsvorgang. Beim Experiment wurden schnelle Übergangsvorgänge ausgelöst, indem ein in einer Kühlwanne liegendes, leicht geneigtes Wärmeübertragerrohr plötzlich mit dem Dampfraum eines unter Druck stehenden Kessels verbunden wurde. Dabei wurden im Rohr unterschiedliche Anfangsbedingungen hinsichtlich der Vorlage von nichtkondensierbaren Gasen (in diesem Falle Luft) eingestellt. Es wurden Versuche mit Atmosphärendruck, mit erhöhtem Druck, aber auch mit vorheriger Evakuierung des Versuchsrohrs durchgeführt. Durch eine Instrumentierung mit neuartigen Nadelsonden, die eine Phasendetektion kombiniert mit einer schnellen lokalen Temperaturmessung ermöglichen, konnte die Umverteilung von Dampf, Kondensat und nichtkondensierbarem Gas als Funktion der Zeit beobachtet werden. Damit bieten die erhaltenen Daten die Möglichkeit, insbesondere die in den Thermohydraulikprogrammen vorhandenen Optionen zur Berechnung der Ausbreitung von nichtkondensierbaren Gasen unter transienten Bedingungen zu validieren.
|
Page generated in 0.058 seconds