• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Context-Aware Parameter Estimation for Forecast Models in the Energy Domain

Dannecker, Lars, Schulze, Robert, Böhm, Matthias, Lehner, Wolfgang, Hackenbroich, Gregor 25 January 2023 (has links)
Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability and efficiency of energy grids. This balancing task requires accurate forecasts of future electricity consumption and production at any point in time. For this purpose, database systems need to be able to rapidly process forecasting queries and to provide accurate results in short time frames. However, time series from the electricity domain pose the challenge that measurements are constantly appended to the time series. Using a naive maintenance approach for such evolving time series would mean a re-estimation of the employed mathematical forecast model from scratch for each new measurement, which is very time consuming. We speed-up the forecast model maintenance by exploiting the particularities of electricity time series to reuse previously employed forecast models and their parameter combinations. These parameter combinations and information about the context in which they were valid are stored in a repository. We compare the current context with contexts from the repository to retrieve parameter combinations that were valid in similar contexts as starting points for further optimization. An evaluation shows that our approach improves the maintenance process especially for complex models by providing more accurate forecasts in less time than comparable estimation methods.

Page generated in 0.0631 seconds