• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patofyziologické mechanizmy hluboké mozkové stimulace vnitřního pallida u dystonických syndromů / Pathophysiological mechanisms of the pallidal deep brain stimulation in dystonic syndromes

Fečíková, Anna January 2020 (has links)
Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective symptomatic treatment for pharmacoresistant dystonic syndromes. The relationship between grey matter volume and intracortical inhibition of the primary motor cortex (MI) in regard to the effectiveness and the state (ON/OFF) of GPi DBS was analysed in the first study. The grey matter of chronically treated patients showed hypertrophy of the supplementary motor area and cerebellar vermis whereas this difference was more significant in patients with a better clinical outcome. The grey matter of the cerebellar hemispheres of the patients showed positive correlation with the improvement of an intracortical inhibition which was generally less effective in patients regardless of the GPi DBS state. Moreover, we showed the same level of SICI in the good responders as in the healthy controls, while in non-responders was the SICI decreased. In the second study, by using paired associative stimulation (PAS) we studied the influence of primary somatosensory cortex (SI) on the MI excitability in dystonia in regards to the effectiveness of GPi DBS. SI PAS decreased the MI excitability in the GPi DBS ON state while switching the stimulation off decreased an inhibitory effect of SI on MI excitability. Non-responders showed a...

Page generated in 0.0601 seconds