Spelling suggestions: "subject:"wahrscheinlichkeitstheorie""
1 |
Learning description logic axioms from discrete probability distributions over description graphs: Extended VersionKriegel, Francesco 20 June 2022 (has links)
Description logics in their standard setting only allow for representing and reasoning with crisp knowledge without any degree of uncertainty. Of course, this is a serious shortcoming for use cases where it is impossible to perfectly determine the truth of a statement. For resolving this expressivity restriction, probabilistic variants of description logics have been introduced. Their model-theoretic semantics is built upon so-called probabilistic interpretations, that is, families of directed graphs the vertices and edges of which are labeled and for which there exists a probability measure on this graph family. Results of scientific experiments, e.g., in medicine, psychology, or biology, that are repeated several times can induce probabilistic interpretations in a natural way. In this document, we shall develop a suitable axiomatization technique for deducing terminological knowledge from the assertional data given in such probabilistic interpretations. More specifically, we consider a probabilistic variant of the description logic EL⊥, and provide a method for constructing a set of rules, so-called concept inclusions, from probabilistic interpretations in a sound and complete manner.
|
2 |
Terminological knowledge aquisition in probalistic description logicKriegel, Francesco 20 June 2022 (has links)
For a probabilistic extension of the description logic EL⊥, we consider the task of automatic acquisition of terminological knowledge from a given probabilistic interpretation. Basically, such a probabilistic interpretation is a family of directed graphs the vertices and edges of which are labeled, and where a discrete probabilitymeasure on this graph family is present. The goal is to derive so-called concept inclusions which are expressible in the considered probabilistic description logic and which hold true in the given probabilistic interpretation. A procedure for an appropriate axiomatization of such graph families is proposed and its soundness and completeness is justified.
|
3 |
Learning General Concept Inclusions in Probabilistic Description LogicsKriegel, Francesco 20 June 2022 (has links)
Probabilistic interpretations consist of a set of interpretations with a shared domain and a measure assigning a probability to each interpretation. Such structures can be obtained as results of repeated experiments, e.g., in biology, psychology, medicine, etc. A translation between probabilistic and crisp description logics is introduced and then utilised to reduce the construction of a base of general concept inclusions of a probabilistic interpretation to the crisp case for which a method for the axiomatisation of a base of GCIs is well-known.
|
Page generated in 0.1077 seconds