Spelling suggestions: "subject:"walker land"" "subject:"walker late""
1 |
Understanding an evolving diffuse plate boundary with geodesy and geochronologyLifton, Zachery Meyer 13 January 2014 (has links)
Understanding spatial and temporal variations in strain accumulation and release along plate boundaries is a fundamental problem in tectonics. Short-term and long-term slip rates are expected to be equal if the regional stress field remains unchanged over time, yet discrepancies between modern geodetic (decadal time scale) slip rates and long-term geologic (10^3 to 10^6 years) slip rates have been observed on parts of the Pacific-North American plate boundary system. Contemporary geodetic slip rates are observed to be ~2 times greater than late Pleistocene geologic slip rates across the southern Walker Lane. I use a combination of GPS geodesy, detailed field geologic mapping, high-resolution LiDAR geodetic imaging, and terrestrial cosmogenic nuclide geochronology to investigate the observed discrepancy between long- and short-term slip rates. I find that the present day slip rate derived from GPS geodesy across the Walker Lane at ~37.5°N is 10.6 ± 0.5 mm/yr. GPS data suggest that much of the observed discrepancy occurs west of the White Mountains fault zone. New dextral slip rates on the White Mountains fault zone of 1.1 ± 0.1 mm/yr since 755 ka, 1.9 +0.5/-0.4 mm/yr since 75-115 ka, 1.9 +0.5/-0.4 mm/yr since 38.4 ± 9.0 ka, and 1.8 +2.8/-0.7 mm/yr since 6.2 ± 3.8 ka are significantly faster than previous estimates and suggest that slip rates there have remained constant since the middle Pleistocene. On the Lone Mountain fault I calculate slip rates of 0.8 ± 0.1 mm/yr since 14.6 ± 1.0 ka and 0.7 ± 0.1 mm/yr since 8.0 ± 0.5 ka, which suggest that extension in the Silver Peak-Lone Mountain extensional complex has increased dramatically since the late Pleistocene.
|
Page generated in 0.0567 seconds