• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 11
  • 11
  • 10
  • 9
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the impacts of global change on water quantity and quality

Malsy, Marcus 14 November 2016 (has links) (PDF)
Water resources in the semi-arid to arid areas of Central Asia are often limited by low precipitation, and hence vulnerable to impacts of global change, i.e. socio-economic development and climate change. Both, socio-economic development and climate change are very likely causing significant changes as water resources are affected by two main effects: Firstly, growing population and industrial activities in the region raise the pressure on water resources due to increasing water abstractions. Secondly, air temperature in the region has been rising in the past far above global average and it is expected to increase further, which will lead to changes in runoff generation and therefore water availability. Increasing temperature as well as increasing water abstractions will affect water quantity and consequently water quality as a result of higher pollution intake or reduction in dilution capacity. Thus, it is of crucial importance to analyse and assess the state of current and future water resources to implement sustainable water management as the above mentioned effects very likely causing significant changes of water resources. Within the last years, the number of scientific research studies using large-scale models to simulate water availability and water use has increased substantially. Several new datasets from earth observations and new or improved models have been published (Werth et al. 2009; Werth and Güntner 2010; van Beek et al. 2011). Nevertheless, those studies focussed on water quantity and did not take into account impacts on water quality induced by global change although changes in water quality affecting aquatic ecosystems and species. Furthermore, spatially explicit large-scale modelling studies have not been carried out for Mongolia and Central Asia to get a comprehensive overview and assessment. To address this research gap, the large-scale water resource modelling framework WaterGAP 3 was applied to Central Asia with a focus on Mongolia to simulate impacts on current and future water resources. WaterGAP 3 consists of hydrology, water use and water quality sub-models in order to simulate current and future water quantity and quality.
2

Assessing the impacts of global change on water quantity and quality: Large-scale modelling studies for Central Asia

Malsy, Marcus 14 September 2016 (has links)
Water resources in the semi-arid to arid areas of Central Asia are often limited by low precipitation, and hence vulnerable to impacts of global change, i.e. socio-economic development and climate change. Both, socio-economic development and climate change are very likely causing significant changes as water resources are affected by two main effects: Firstly, growing population and industrial activities in the region raise the pressure on water resources due to increasing water abstractions. Secondly, air temperature in the region has been rising in the past far above global average and it is expected to increase further, which will lead to changes in runoff generation and therefore water availability. Increasing temperature as well as increasing water abstractions will affect water quantity and consequently water quality as a result of higher pollution intake or reduction in dilution capacity. Thus, it is of crucial importance to analyse and assess the state of current and future water resources to implement sustainable water management as the above mentioned effects very likely causing significant changes of water resources. Within the last years, the number of scientific research studies using large-scale models to simulate water availability and water use has increased substantially. Several new datasets from earth observations and new or improved models have been published (Werth et al. 2009; Werth and Güntner 2010; van Beek et al. 2011). Nevertheless, those studies focussed on water quantity and did not take into account impacts on water quality induced by global change although changes in water quality affecting aquatic ecosystems and species. Furthermore, spatially explicit large-scale modelling studies have not been carried out for Mongolia and Central Asia to get a comprehensive overview and assessment. To address this research gap, the large-scale water resource modelling framework WaterGAP 3 was applied to Central Asia with a focus on Mongolia to simulate impacts on current and future water resources. WaterGAP 3 consists of hydrology, water use and water quality sub-models in order to simulate current and future water quantity and quality.
3

Governance of Inter-sectoral reallocation of water within the context of Urbanization in Hyderabad, India

Jakhalu, Atoho 02 January 2020 (has links)
Der intersektorale Wasserkonflikt zwischen urbaner und agrarischer Wassernutzung in Hyderabad und die Konkurrenz zwischen den Bedürfnissen der Stadt und den Ansprüchen der Landwirtschaft werden verschärft durch willkürliche Verteilungspraktiken, die den offiziellen Zuteilungsrichtlinien oft widersprechen. Übersetzt in die Sprache von Ostrom, gilt die vorliegende Untersuchung der Kernfrage, warum bestimmte praktizierte Regeln (rules-in-use) fortbestehen, obwohl formale Regeln (rules-in-form) im Bereich der Nutzungsrechte an Wasser vorhanden sind. Die Arbeit versucht dementsprechend zu erklären, wie bestehende Institutionen und Governancestrukturen die Interaktionen beteiligter Akteure und deren Verhalten beeinflussen und wie daraus eine durch Willkür gekennzeichnete Umverteilung erwächst. Knights Verteilungstheorie institutionellen Wandels und sein Ansatz über Machtressourcen vermögen zu erklären, wie menschliche Interaktionen in Zusammenhang mit solchen Konflikten über begrenzte Ressourcen zustande kommen. Die Ergebnisse der Arbeit zeigen ebenfalls, welche Wirkungen die Charakteristika verschiedener Gruppen von Wassernutzern und deren spezifische Abhängigkeit von Wasserressourcen auf ihre Fähigkeit zur politischen Einflussnahme ausüben. Solche Ausprägungen von Ressourcenabhängigkeiten bedingen Machtasymmetrien und erhöhen das Ausmaß willkürlicher Umverteilungen von Wasser. Die Untersuchung identifiziert eine Literaturlücke im Bereich der Politik der Wassergovernance, indem sie den Wählereinfluss als Machtressource im Land-Stadt-Konflikt um Wasserressourcen empirisch belegt. Die Arbeit zielt insgesamt darauf, das Erklärungspotential von Eigentumsrechtstheorien zu nutzen und anhand von Wasserkonflikten in Hyderabad ein Beispiel zur Anwendbarkeit aktueller Theorien institutionellen Wandels zu geben. / Hyderabad’s inter-sectoral water conflict and competition between the city’s urban needs and the agricultural sector have been fueled by persistent arbitrary water reallocations against the prescribed allocation guidelines. To translate the key question into Ostrom’s language; this study seeks to unravel the persistence of rules-in-use, despite the rules-in-form already in place within the realms of property rights. Ostrom’s Institutional Analysis and Development framework identifies exogenous variables and its influences on the role of institutions which shapes human interaction and decision making processes. It attempts to explain how the existing water-allocation mechanism has propagated the way rules and actors currently interact to influence such arbitrary water re-allocation. Knight’s distributional theory of institutional change and his concept of power resources provide good explanations of human interaction in the context of such conflicts over limited resources. The study results also reveal how the characteristics of water-user groups and its dependence on water resource have the ability to exert political influence over water allocation. Such attributes of resource dependence characterizes power asymmetry, thereby increasing the scale of arbitrary water reallocations. Henceforth, this study addresses the gap in ‘politics of water governance’ in existing literature by empirically deriving ‘political electorate’ as a power resource in rural-urban water contestation. Overall, this study seeks to employ the theoretical explanations of property rights and attempts to provide a case on the applicability of contemporary theories of institutional change by taking the case study of Hyderabad’s water contestation.
4

Water Resources in the Anthropocene / Assessing the impact of climate change on freshwater supply and the scope for adaptation in the livestock sector

Heinke, Jens 05 March 2021 (has links)
Der hydrologische Kreislauf versorgt die Menschheit mit Wasserressourcen, die für ihr Wohlergehen unabdingbar sind. Ziel dieser Arbeit ist es, das Verständnis über klimabedingte Veränderungen des hydrologischen Kreislaufs zu verbessern, wie diese die Verfügbarkeit von Wasserressourcen in der Zukunft beeinflussen und welche Möglichkeiten bestehen, den Druck auf die verfügbaren Wasserressourcen durch Verringerung des anthropogenen Wasserverbrauchs zu reduzieren. Diese Dissertation zeigt, dass der Klimawandel eine große Bedrohung für die Wasserversorgung der zukünftigen Bevölkerung darstellt. Durch Begrenzung des Anstiegs der globalen Mitteltemperatur auf 2 K oder sogar 1,5 K über das vorindustrielle Niveau können gravierende negative Auswirkungen auf die Wasserverfügbarkeit jedoch weitgehend vermieden werden. Dennoch wären einige Regionen wie der Mittelmeerraum "eher wahrscheinlich" von schwerwiegenden hydrologischen Veränderungen betroffen, und in großen Teilen der Welt könnten negative Auswirkungen auf die Wasserverfügbarkeit aufgrund der großen Unsicherheiten in den Projektionen nicht ausgeschlossen werden. Bei der Untersuchung der Nachfrageseite liegt der Schwerpunkt auf der Wassernutzung in der Tierproduktion. Diese Dissertation schätzt den gegenwärtigen Wasserverbrauch für die Produktion von Tierfutter auf 4666 km3/yr (44 % des gesamten landwirtschaftlichen Wasserverbrauchs). Große Verbesserungen der Wasserproduktivität können bei Schweinen und Geflügel durch Verbesserungen sowohl in der Futtermittelproduktion als auch in der Tierhaltung erzielt werden. Bei Wiederkäuern liegt das größte Potenzial in der Verbesserung der Tierhaltung. Allerdings geht eine effizientere Futterverwertung bei Wiederkäuern, die durch erhöhte Beigabe von Kraftfutter erzielt wird, mit einem erhöhten Wasserbedarf für die Produktion des Futters einher. Dadurch ist die Verbesserung der Wasserproduktivität bei Wiederkäuern begrenzt. / The hydrological cycle provides humanity with water resources that are essential for its well-being. The aim of this thesis is to advance the understanding of climate-related changes in the hydrological cycle, how they will affect the availability of water resources in the future, and what opportunities exist to reduce anthropogenic water use to lower the pressure on water resources. This thesis demonstrates that climate change is a large threat to freshwater supply for future populations. Limiting the increase in global mean temperature to 2 K or even 1.5 K above pre-industrial levels can mitigate most of the severe negative impacts on water resources. However, some regions such as the Mediterranean would still ‘more likely than not’ be affected by severe hydrological change, and in large parts of the world, negative impacts on water availability could not be ruled out due to the large uncertainties in the projections. On the demand side, the focus is on water use in the livestock sector. This thesis estimates that about 4666 km3/yr (44 % of total agricultural water use) are currently used for feed production for the livestock sector. Large improvements in livestock water productivity can be achieved for pigs and poultry by improvements in feed production and livestock rearing alike. For ruminants, the largest potential lies in improving livestock management. However, improving the feed use efficiency of ruminants through increased supplementation with forage crops comes at the cost of increased water requirements to produce the feed. This limits the potential for improving livestock water productivity in ruminant production.
5

Decision Support for Managed Aquifer Recharge (MAR) Project Planning to Mitigate Water Scarcity based on Non-conventional Water Resources / Entscheidungsunterstützung für die Projektplanung künstlicher Grundwasseranreicherungsmaßnahmen basierend auf unkonventionellen Wasserressourcen

Rahman, Mohammad Azizur 18 July 2011 (has links)
No description available.
6

Integrated watershed modeling in Central Brazil / Integrierte Einzugsgebietsmodellierung in Zentralbrasilien: Beiträge zur robusten prozessbasierten Modellsimulation

Strauch, Michael 03 July 2014 (has links) (PDF)
Over the last decades, fast growing population along with urban and agricultural sprawl has drastically increased the pressure on water resources of the Federal District (DF), Brazil. Various socio-environmental problems, such as soil erosion, non-point source pollution, reservoir silting, and conflicts among water users evoked the need for more efficient and sustainable ways to use land and water. Due to the complexity of processes relevant at the scale of river basins, a prior analysis of impacts of certain land use and/or land management changes is only feasible by means of modeling. The Soil and Water Assessment Tool (SWAT) has been proven to be useful in this context, across the globe and for different environmental conditions. In this thesis, the SWAT model is utilized to evaluate the impact of Best Management Practices (BMPs) on catchment hydrology and sediment transport. However, model applications in tropical regions, such as the DF, are hampered by severe challenges, (i) the lack of input and control data in an adequate temporal and spatial resolution and (ii) model structural failures in representing processes under tropical conditions. The present (cumulative) thesis addresses these challenges in model simulations for two contrasting watersheds, which both are important sources of the DF’s drinking water supply, i.e. (i) the agriculture-dominated Pipiripau river basin where conflicting demands put immense pressure on the available water resources and (ii) the Santa Maria / Torto river basin, which is to large parts protected as national park and, thus, covered by native vegetation of the Cerrado biome. Perhaps one of the most challenging issues facing watershed modelers in tropical regions is the fact that rain gauge networks can usually not reflect the high spatio-temporal variability of mostly convective precipitation patterns. Therefore, an ensemble of different reasonable input precipitation data-sets was used to examine the uncertainty in parameterization and model output. Acceptable streamflow and sediment load predictions could be achieved for each input data-set. However, the best-fit parameter values varied widely across the ensemble. Due to its enhanced consideration of parameter uncertainty, this ensemble approach provides more robust predictions and hence is reasonable to be used also for scenario simulations. BMP scenarios for the Pipiripau River Basin revealed that erosion control constructions, such as terraces and small retention basins along roads (Barraginhas) are promising measures to reduce sediment loads (up to 40%) while maintaining streamflow. Tests for a multi-diverse crop rotation system, in contrast, showed a high vulnerability of the hydrologic system against any increase in irrigation. Considering the BMP implementation costs, it was possible to estimate cost-abatement curves, which can provide useful information for watershed managers, especially when BMPs are supported by Payments for Environmental Services as it is the case in the study area due to the program Produtor de Água. While for agricultural areas the model has proven to generate plausible results, the plant growth module of SWAT was found to be not suitable for simulating perennial tropical vegetation, such as Cerrado (savanna) or forest, which can also play a crucial role in river basin management. For temperate regions SWAT uses dormancy to terminate growing seasons of trees and perennials. However, there is no mechanism considered to reflect seasonality in the tropics, i.e. the phenological change between wet and dry season. Therefore, a soil moisture based approach was implemented into the plant growth module to trigger new growing cycles in the transition period from dry to wet season. The adapted model was successfully tested against LAI and ET time series derived from remote sensing products (MODIS). Since the proposed changes are process-based but also allow flexible model settings, the modified plant growth module can be seen as a fundamental improvement useful for future model application in the tropics. The present thesis shows insights into the workflow of a watershed model application in the semi-humid tropics – from input data processing and model setup over source code adaptation, model calibration and uncertainty analysis to its use for running scenarios. It depicts region-specific challenges but also provides practical solutions. Hence, this work might be seen as one further step toward robust and process-based model predictions to assist land and water resources management. / Starkes Bevölkerungswachstum, ungeplante Suburbanisierung und Landnutzungsänderungen (z.B. Intensivierung in der Landwirtschaft) verstärkten innerhalb der letzten Jahrzehnte zunehmend den Druck auf die Wasserressourcen des Bundesdistrikts Brasilien (zentralbrasilianisches Hochland), in dessen Mitte die junge Hauptstadt Brasília liegt. Damit verbundene negative Umweltauswirkungen, wie Bodenerosion, Stoff- und Sedimenteinträge in Fließgewässer und Talsperren sowie Konflikte zwischen den Wassernutzern erfordern daher dringend effektive und nachhaltige Lösungen im Land- und Wasserressourcen-management. Der Einfluss von möglichen zukünftigen Landnutzungs- und Bewirtschaftungsänderungen auf Wasserverfügbarkeit und -qualität hängt vom jeweiligen, oftmals sehr komplexen, landschaftsökologischen Prozessgefüge ab und kann nur mithilfe von prozessbasierten Simulationsmodellen quantitativ auf der Ebene von Einzugsgebieten abgeschätzt werden. Das “Soil and Water Assessment Tool” (SWAT) ist ein solches Modell. Es findet weltweite Anwendung für verschiedene Umweltbedingungen in Einzugsgebieten der Meso- bis Makroskala, um Landnutzungseffekte auf den Wasserhaushalt und den Transport von Nährstoffen, Pestiziden und Sedimenten zu prognostizieren. Seine Anwendung in tropischen Regionen, wie etwa in Zentralbrasilien, ist jedoch mit erheblichen Herausforderungen verbunden. Das betrifft sowohl die Verfügbarkeit von Eingangs- und Referenzdaten in ausreichender raum-zeitlicher Auflösung, als auch modellstrukturelle Unzulänglichkeiten bei der Prozessabbildung. Die vorliegende kumulative Dissertation zeigt dies anhand von Modellanwendungen für zwei unterschiedliche wasserwirtschaftlich relevante Einzugsgebiete (EZG): Das landwirtschaftlich intensiv genutzte EZG des Rio Pipiripau mit aktuell besonders konfliktträchtiger Wassernutzung, und das Santa Maria/Torto-EZG, welches - geschützt als Nationalpark - durch größtenteils natürliche Vegetationsformationen der brasilianischen Savanne (Cerrado) gekennzeichnet ist. Eine der größten Herausforderungen für die Einzugsgebietsmodellierung in tropischen Regionen liegt in der Abschätzung des Gebietsniederschlages, da vorhandene Messstationsdichten oft nicht ausreichen, um die hohe räumliche und zeitliche Variabilität der meist konvektiven Niederschläge zu erfassen. Mithilfe eines Ensembles verschiedener, plausibel generierter Niederschlagsreihen ist der Einfluss von Niederschlagsdaten-Unsicherheit auf die Modellparametrisierung und -vorhersage explizit berücksichtigt und untersucht worden. Zufriedenstellende Abfluss- und Sedimentfrachtsimulationen waren mit jeder der als Modelinput verwendeten Niederschlagsreihen möglich, jedoch nur bei entsprechender, z.T. stark voneinander abweichender Einstellung der Kalibrierungsparameter. Da diese umfassendere Betrachtung von Parameterunsicherheit zu robusteren Modellvorhersagen führt, wurde der Ensemble-Ansatz auch in der Simulation von Bewirtschaftungsszenarien, dem eigentlichen Modellzweck, verwendet. Die Szenariosimulationen zeigten, dass Maßnahmen zur Erosionsvermeidung (Terrassierung) und zum Sedimentrückhalt (kleine Sedimentrückhaltebecken entlang von Straßen - Barraginhas) die Sedimentfracht des Rio Pipiripau durchschnittlich um bis zu 40% reduzieren können, ohne dabei die Wasserverfügbarkeit zu beeinträchtigen. Modellszenarien mit einer vielgliedrigen Fruchtfolge auf großer Fläche verdeutlichten dagegen die hohe Vulnerabilität des Niedrigwasserabflusses in der Trockenzeit gegenüber jedweder Erhöhung der Bewässerungsmenge. Auf Grundlage von Kostenschätzungen für einzelne Maßnahmen konnten Kostenkurven zur Verringerung der Sedimentfracht und damit nützliche Informationen für das Wasserressourcen-Management abgeleitet werden, insbesondere weil eine Auswahl solcher Agrar-Umweltmaßnahmen im Pipiripau-EZG durch das Programm Produtor de Água finanziell gefördert werden sollen. Während das Modell in landwirtschaftlich genutzten Gebieten plausible Ergebnisse produzierte, wurden erhebliche Schwachstellen in der Simulation ausdauernder Vegetation (z.B. Cerrado) identifiziert. Zur Unterbrechung jährlicher Vegetationszyklen verwendet SWAT eine tageslängenabhängige Dormanzperiode. Diese ist zwar zweckmäßig zur Abbildung der Vegetationsdynamik in den gemäßigten Breiten, steuert aber nicht tropische Vegetationszyklen. Um den Wechsel zwischen Trocken- und Regenzeit in der pflanzenphänologischen Simulation in SWAT abzubilden, wurde daher im Rahmen dieser Arbeit das Pflanzenwachstumsmodul modifiziert, und zwar unter anderem durch Einbeziehung der simulierten Bodenfeuchte zur Unterbrechung der Wachstumszyklen. Das angepasste Modul wurde erfolgreich anhand von Fernerkundungsdaten (MODIS) zum zeitlichen Verlauf von Blattflächenindex und Evapotranspiration getestet. Es ist prozessbasiert und erlaubt flexible Einstellungen, so dass es als grundlegende Modellverbesserung auch für andere SWAT-Anwender von großem Nutzen sein kann. Die vorliegende Dissertation bringt neue Einsichten in verschiedene wichtige Aspekte der integrierten Modellierung tropischer Einzugsgebiete, von der Eingangsdatenaufbereitung über Quellcode-Anpassung, Modellkalibrierung und Unsicherheitsanalyse bis hin zu Szenariosimulationen. Sie veranschaulicht regionsspezifische Herausforderungen, liefert gleichzeitig aber auch praktikable Lösungen und damit einen wichtigen Beitrag für robustere prozessbasierte Modellanwendungen als Entscheidungsunterstützung im Bereich Land- und Wasserressourcenmanagement.
7

Integrated watershed modeling in Central Brazil: Toward robust process-based predictions

Strauch, Michael 16 April 2014 (has links)
Over the last decades, fast growing population along with urban and agricultural sprawl has drastically increased the pressure on water resources of the Federal District (DF), Brazil. Various socio-environmental problems, such as soil erosion, non-point source pollution, reservoir silting, and conflicts among water users evoked the need for more efficient and sustainable ways to use land and water. Due to the complexity of processes relevant at the scale of river basins, a prior analysis of impacts of certain land use and/or land management changes is only feasible by means of modeling. The Soil and Water Assessment Tool (SWAT) has been proven to be useful in this context, across the globe and for different environmental conditions. In this thesis, the SWAT model is utilized to evaluate the impact of Best Management Practices (BMPs) on catchment hydrology and sediment transport. However, model applications in tropical regions, such as the DF, are hampered by severe challenges, (i) the lack of input and control data in an adequate temporal and spatial resolution and (ii) model structural failures in representing processes under tropical conditions. The present (cumulative) thesis addresses these challenges in model simulations for two contrasting watersheds, which both are important sources of the DF’s drinking water supply, i.e. (i) the agriculture-dominated Pipiripau river basin where conflicting demands put immense pressure on the available water resources and (ii) the Santa Maria / Torto river basin, which is to large parts protected as national park and, thus, covered by native vegetation of the Cerrado biome. Perhaps one of the most challenging issues facing watershed modelers in tropical regions is the fact that rain gauge networks can usually not reflect the high spatio-temporal variability of mostly convective precipitation patterns. Therefore, an ensemble of different reasonable input precipitation data-sets was used to examine the uncertainty in parameterization and model output. Acceptable streamflow and sediment load predictions could be achieved for each input data-set. However, the best-fit parameter values varied widely across the ensemble. Due to its enhanced consideration of parameter uncertainty, this ensemble approach provides more robust predictions and hence is reasonable to be used also for scenario simulations. BMP scenarios for the Pipiripau River Basin revealed that erosion control constructions, such as terraces and small retention basins along roads (Barraginhas) are promising measures to reduce sediment loads (up to 40%) while maintaining streamflow. Tests for a multi-diverse crop rotation system, in contrast, showed a high vulnerability of the hydrologic system against any increase in irrigation. Considering the BMP implementation costs, it was possible to estimate cost-abatement curves, which can provide useful information for watershed managers, especially when BMPs are supported by Payments for Environmental Services as it is the case in the study area due to the program Produtor de Água. While for agricultural areas the model has proven to generate plausible results, the plant growth module of SWAT was found to be not suitable for simulating perennial tropical vegetation, such as Cerrado (savanna) or forest, which can also play a crucial role in river basin management. For temperate regions SWAT uses dormancy to terminate growing seasons of trees and perennials. However, there is no mechanism considered to reflect seasonality in the tropics, i.e. the phenological change between wet and dry season. Therefore, a soil moisture based approach was implemented into the plant growth module to trigger new growing cycles in the transition period from dry to wet season. The adapted model was successfully tested against LAI and ET time series derived from remote sensing products (MODIS). Since the proposed changes are process-based but also allow flexible model settings, the modified plant growth module can be seen as a fundamental improvement useful for future model application in the tropics. The present thesis shows insights into the workflow of a watershed model application in the semi-humid tropics – from input data processing and model setup over source code adaptation, model calibration and uncertainty analysis to its use for running scenarios. It depicts region-specific challenges but also provides practical solutions. Hence, this work might be seen as one further step toward robust and process-based model predictions to assist land and water resources management. / Starkes Bevölkerungswachstum, ungeplante Suburbanisierung und Landnutzungsänderungen (z.B. Intensivierung in der Landwirtschaft) verstärkten innerhalb der letzten Jahrzehnte zunehmend den Druck auf die Wasserressourcen des Bundesdistrikts Brasilien (zentralbrasilianisches Hochland), in dessen Mitte die junge Hauptstadt Brasília liegt. Damit verbundene negative Umweltauswirkungen, wie Bodenerosion, Stoff- und Sedimenteinträge in Fließgewässer und Talsperren sowie Konflikte zwischen den Wassernutzern erfordern daher dringend effektive und nachhaltige Lösungen im Land- und Wasserressourcen-management. Der Einfluss von möglichen zukünftigen Landnutzungs- und Bewirtschaftungsänderungen auf Wasserverfügbarkeit und -qualität hängt vom jeweiligen, oftmals sehr komplexen, landschaftsökologischen Prozessgefüge ab und kann nur mithilfe von prozessbasierten Simulationsmodellen quantitativ auf der Ebene von Einzugsgebieten abgeschätzt werden. Das “Soil and Water Assessment Tool” (SWAT) ist ein solches Modell. Es findet weltweite Anwendung für verschiedene Umweltbedingungen in Einzugsgebieten der Meso- bis Makroskala, um Landnutzungseffekte auf den Wasserhaushalt und den Transport von Nährstoffen, Pestiziden und Sedimenten zu prognostizieren. Seine Anwendung in tropischen Regionen, wie etwa in Zentralbrasilien, ist jedoch mit erheblichen Herausforderungen verbunden. Das betrifft sowohl die Verfügbarkeit von Eingangs- und Referenzdaten in ausreichender raum-zeitlicher Auflösung, als auch modellstrukturelle Unzulänglichkeiten bei der Prozessabbildung. Die vorliegende kumulative Dissertation zeigt dies anhand von Modellanwendungen für zwei unterschiedliche wasserwirtschaftlich relevante Einzugsgebiete (EZG): Das landwirtschaftlich intensiv genutzte EZG des Rio Pipiripau mit aktuell besonders konfliktträchtiger Wassernutzung, und das Santa Maria/Torto-EZG, welches - geschützt als Nationalpark - durch größtenteils natürliche Vegetationsformationen der brasilianischen Savanne (Cerrado) gekennzeichnet ist. Eine der größten Herausforderungen für die Einzugsgebietsmodellierung in tropischen Regionen liegt in der Abschätzung des Gebietsniederschlages, da vorhandene Messstationsdichten oft nicht ausreichen, um die hohe räumliche und zeitliche Variabilität der meist konvektiven Niederschläge zu erfassen. Mithilfe eines Ensembles verschiedener, plausibel generierter Niederschlagsreihen ist der Einfluss von Niederschlagsdaten-Unsicherheit auf die Modellparametrisierung und -vorhersage explizit berücksichtigt und untersucht worden. Zufriedenstellende Abfluss- und Sedimentfrachtsimulationen waren mit jeder der als Modelinput verwendeten Niederschlagsreihen möglich, jedoch nur bei entsprechender, z.T. stark voneinander abweichender Einstellung der Kalibrierungsparameter. Da diese umfassendere Betrachtung von Parameterunsicherheit zu robusteren Modellvorhersagen führt, wurde der Ensemble-Ansatz auch in der Simulation von Bewirtschaftungsszenarien, dem eigentlichen Modellzweck, verwendet. Die Szenariosimulationen zeigten, dass Maßnahmen zur Erosionsvermeidung (Terrassierung) und zum Sedimentrückhalt (kleine Sedimentrückhaltebecken entlang von Straßen - Barraginhas) die Sedimentfracht des Rio Pipiripau durchschnittlich um bis zu 40% reduzieren können, ohne dabei die Wasserverfügbarkeit zu beeinträchtigen. Modellszenarien mit einer vielgliedrigen Fruchtfolge auf großer Fläche verdeutlichten dagegen die hohe Vulnerabilität des Niedrigwasserabflusses in der Trockenzeit gegenüber jedweder Erhöhung der Bewässerungsmenge. Auf Grundlage von Kostenschätzungen für einzelne Maßnahmen konnten Kostenkurven zur Verringerung der Sedimentfracht und damit nützliche Informationen für das Wasserressourcen-Management abgeleitet werden, insbesondere weil eine Auswahl solcher Agrar-Umweltmaßnahmen im Pipiripau-EZG durch das Programm Produtor de Água finanziell gefördert werden sollen. Während das Modell in landwirtschaftlich genutzten Gebieten plausible Ergebnisse produzierte, wurden erhebliche Schwachstellen in der Simulation ausdauernder Vegetation (z.B. Cerrado) identifiziert. Zur Unterbrechung jährlicher Vegetationszyklen verwendet SWAT eine tageslängenabhängige Dormanzperiode. Diese ist zwar zweckmäßig zur Abbildung der Vegetationsdynamik in den gemäßigten Breiten, steuert aber nicht tropische Vegetationszyklen. Um den Wechsel zwischen Trocken- und Regenzeit in der pflanzenphänologischen Simulation in SWAT abzubilden, wurde daher im Rahmen dieser Arbeit das Pflanzenwachstumsmodul modifiziert, und zwar unter anderem durch Einbeziehung der simulierten Bodenfeuchte zur Unterbrechung der Wachstumszyklen. Das angepasste Modul wurde erfolgreich anhand von Fernerkundungsdaten (MODIS) zum zeitlichen Verlauf von Blattflächenindex und Evapotranspiration getestet. Es ist prozessbasiert und erlaubt flexible Einstellungen, so dass es als grundlegende Modellverbesserung auch für andere SWAT-Anwender von großem Nutzen sein kann. Die vorliegende Dissertation bringt neue Einsichten in verschiedene wichtige Aspekte der integrierten Modellierung tropischer Einzugsgebiete, von der Eingangsdatenaufbereitung über Quellcode-Anpassung, Modellkalibrierung und Unsicherheitsanalyse bis hin zu Szenariosimulationen. Sie veranschaulicht regionsspezifische Herausforderungen, liefert gleichzeitig aber auch praktikable Lösungen und damit einen wichtigen Beitrag für robustere prozessbasierte Modellanwendungen als Entscheidungsunterstützung im Bereich Land- und Wasserressourcenmanagement.
8

Laying a net across mountain valleys and plains

Mackinnon, Anne 22 May 2014 (has links)
Vor dem Hintergrund der aktuellen Herausforderungen im Management natürlicher Ressourcen und dem Bedarf geeigneter Institutionen, um diesen Herausforderungen gerecht zu werden, untersucht die vorliegende Arbeit ein Managementsystem für Wasserressourcen im Bundesstaat Wyoming, USA. Die Autorin untersucht die über 100-jährige Geschichte der Wasserrechte im landwirtschaftlichen Bewässerungssektor. Die Studie zeigt, wie und warum die Verfügungsrechte zwischen privaten Nutzern und der staatlichen Administration hin und her geschoben wurden und welche Konsequenzen dies brachte. Sie kommt zu dem Schluss, dass das System im Laufe des letzten Jahrhunderts gegenüber seinem Hauptzweck – der Bewässerung – als resilient gelten kann. Was jedoch andere neuere Funktionen angeht, im Besonderen die Nutzung ohne Verbrauch ist das System als weniger resilient einzustufen. Die Arbeit trägt zu einer Weiterentwicklung der Theorien des institutionellen Wandels bei. Die Autorin zeigt die Wichtigkeit von extremen physischen Bedingungen, wie geringer Niederschlagsmenge, kurzen Wachstumsperioden oder schwierigen Bodenverhältnissen, für den institutionellen Wandel. Solche Gegebenheiten können zu pfadabhängigen Veränderungen führen. Gleichzeitig diktieren sie den Rahmen, innerhalb dessen ein stärkerer institutioneller Wandel im natürlichen Ressourcenmanagement möglich wäre. / Given the need for institutions managing natural resources that can be foundations for dealing with challenges like climate change, this dissertation examines more than 100 years of a water resource management system in the Western U.S., in the state of Wyoming. The dissertation identifies the key actors in this system as water users and the water administrators in the state government. The study determines that the Wyoming system distributes property rights in water between users and the state. The study finds that over a century the system has proved itself resilient towards its most longstanding users, in irrigated agriculture. However, the system has lacked a resilient response to new demands, particularly non-consumptive uses of water. In a contribution to theories of institutional change, the dissertation demonstrates the important role in natural resource management systems played by harsh physical conditions such as lack of precipitation, short growing seasons, and difficult terrain. These conditions can create path dependency and dictate the circumstances that allow path-breaking in natural resource management institutions.
9

Development of regional climate change projections for hydrological impact assessments in distrito federal, Brazil

Borges de Amorim, Pablo 24 June 2015 (has links) (PDF)
Facing the urgency of taking actions to guarantee the water supply to Brazil's Capital, the project called IWAS/ÁguaDF aims to provide scientific knowledge for the development of an Integrated Water Resources Management (IWRM) concept. The project is organized in multiple working groups wherein climate is considered as one of the main drivers. The water supply system of Distrito Federal (DF) is mainly dependent on three major complexes: river basins, waste water and drinking water. Anthropogenic climate change has the potential to affect these water complexes in a number of ways such as by losing storage capacity due to erosion and sedimentation, through altered persistency of dry events and due to increasing water demand. As a contribution to the IWAS/ÁguaDF project, this study focuses on the development of climate change projections for hydrological impact assessments at local/regional scale. The development of proper climate information is a challenging task. The level of complexity corresponds directly to the issues that concern impact modellers as well as technical aspects such as available observational data, human and computational resources. The identification of the needs for water-related issues gives the foundation for deriving proper climate projections. Before making projections, it is necessary to assess the current climate conditions, or baseline climate. Despite a better understanding of the regional aspects of the climate and the ongoing changes, the baseline climate provides the foundation for calibrating and validating climate models and downscaling methods. The General Circulation Models (GCMs) are the most preferred tools in simulating the response of the climate system to anthropogenic activities, like increasing greenhouse gases and aerosol emissions. However, the climate information required for regional impact studies, such as water resources management in DF, is of a spatial scale much finer than that provided by GCMs and therefore often demands a downscaling procedure. Hydrological models are usually sensitive to the temporal variability of precipitation at scales that are not well represented by GCMs. Statistical downscaling methods have the potential to bridge the mismatch between GCMs and impact models by adding local variability that is consistent with both the large-scale signal and local observations. The tool used (i.e., Statistical DownScaling Model - SDSM) is described as a hybrid of regression-based and stochastic weather generator. The systematic calibration adopted provides the appropriated predictors and model parameterization. The validation procedure takes into account the metrics relevant to the requirements of hydrological studies. Moreover, the downscaling approach considers several climate models (i.e., 18 GCMs) and emission scenarios (i.e., SRES A1B, A2, B1) in order to sample the widest sources of uncertainties available. In spite of the elevated level of uncertainties in the magnitude of change, most of the downscaled projections agree with positive changes in temperature and precipitation for the period of 2046-2065 when compared to the reference period (i.e., 1980-1999). Large ensembles are preferable but are often associated with massive amount of data which have limited application in hydrological impact studies. An alternative is to identify subsets of projections that are most likely and projections that have lower likelihood but higher impact. A set of representative climate projections is suggested for hydrological impact assessments. Although high resolution information is preferable, it relies on limited assumptions inherent to observations and coarse-resolution projections and, therefore, its use alone is not recommended. The combination of the baseline climate with large- and local-scale projections achieved in this study provides a wide envelope of climate information for assessing the sensitivity of hydrological systems in DF. A better understanding of the vulnerability of hydrological systems through the application of multiple sources of climate information and appropriate sampling of known uncertainties is perhaps the best way to contribute to the development of robust adaptation strategies. / Starkes Bevölkerungswachstum sowie Landnutzungs- und Klimawandel gefährden die Wasserversorgung der Metropolregion Brasília. Vor diesem Hintergrund soll das Projekt IWAS/ÁguaDF die wissenschaftlichen Grundlagen für ein Integriertes Wasserressourcen-Management (IWRM) im Distrito Federal (DF) erarbeiten. Das Projekt gliedert sich in drei klimasensitive Bereiche: Einzugsgebietsmanagement, Abwasseraufbereitung und Trinkwasserversorgung. Klimaänderungen können die Wasserversorgung im DF vielfältig beeinflussen, durch Veränderung der speicherbaren Wassermenge (Wasserdargebot, Speicherkapazität von Talsperren durch Sedimentation), der Dauer von Dürreperioden und des Wasserbedarfs (z.B. für Bewässerung). Klimaprojektionen für regionale hydrologische Impaktstudien stellen jedoch eine große Heraus-forderung dar. Ihre Komplexität richtet sich nach dem Bedarf des Impaktmodellierers und hängt zudem von technischen Voraussetzungen ab, wie der Verfügbarkeit von Beobachtungsdaten sowie von Personal- und Rechenressourcen. Die Ableitung geeigneter Maßnahmen für ein nachhaltiges Wasserressourcenmanagement im DF stellt hohe Ansprüche an die Qualität der zu entwickelnden Klimaprojektionen. Noch vor der Projektion müssen die gegenwärtigen klimatischen Bedingungen (Referenzklima) analysiert und bewertet werden. Die Analyse des Referenzklimas ermöglicht ein besseres Verständnis regionaler Unterschiede und aktueller Tendenzen und bildet die Grundlage für die Kalibrierung und Validierung von Klimamodellen und Downscaling-Methoden. Globale Klimamodelle (GCM) simulieren die Reaktion des Klimasystems auf anthropogene Treibhausgas- und Aerosolemissionen. Ihre räumliche Auflösung ist jedoch meist zu grob für regionale Klimaimpaktstudien. Zudem reagieren hydrologische Modelle meist sehr sensitiv auf zeitlich variable Niederschläge, welche in hoher zeitlicher Auflösung (Tagesschritte) ebenfalls nur unzureichend in GCM abgebildet werden. Statistische Downscaling-Verfahren können diese Inkohärenz zwischen GCM und Impaktmodellen reduzieren, indem sie das projizierte Klimasignal um lokale Variabilität (konsistent gegenüber den Beobachtungen) erweitern. Das in der vorliegenden Arbeit verwendete Tool, Statistical DownScaling Model - SDSM, vereint regressionsbasierte und stochastische Methoden der Wettergenerierung. Geeignete Prädiktoren und Modelparameter wurden durch systematische Kalibrierung bestimmt und anschließend validiert, wobei unter anderem auch hydrologisch relevante Gütekriterien verwendet wurden. Der gewählte Downscaling-Ansatz berücksichtigt zudem eine Vielzahl verschiedener Globalmodelle (18 GCM) und Emissionsszenarien (SRES A1B, A2 und B1) um die mit Klimaprojektionen verbundene hohe Unsicherheit möglichst breit abzudecken. Die Mehrheit der regionalen Projektionen weist auf eine Zunahme von Temperatur und Niederschlag hin (Zeitraum 2046 bis 2065 gegenüber Referenz-zeitraum, 1980 bis 1999), wenngleich die Stärke des Änderungssignals stark über das Ensemble variiert. Große Modellensemble sind zwar von Vorteil, sie sind jedoch auch mit einer erheblichen Datenmenge verbunden, welche für hydrologische Impaktstudien nur begrenzt nutzbar ist. Alternativ können einzelne „wahrscheinliche“ Projektionen verwendet werden sowie Projektionen, die weniger wahrscheinlich, aber mit einem starken Impakt verbunden sind. Ein solcher Satz repräsentativer Klimaprojektionen wurde für weitergehende Impaktstudien ausgewählt. Auch wenn in der Regel hochaufgelöste Klimaprojektionen angestrebt werden, ihr alleiniger Einsatz in Impaktstudien ist nicht zu empfehlen, aufgrund der vereinfachten Annahmen über die statistische Beziehung zwischen Beobachtungsdaten und den Modellergebnissen grob aufgelöster Globalmodelle. Der Vergleich des Referenzklimas mit großräumigen und lokalen Projektionen, wie er in dieser Arbeit durchgeführt wurde, liefert ein breites Spektrum an Klimainformationen zur Bewertung der Vulnerabilität hydrologischer Systeme im DF. Die Einbeziehung einer Vielzahl vorhandener Klimamodelle und die gezielte, den ermittelten Unsicherheitsbereich vollständig abdeckende Auswahl an Projektionen sollte die Entwicklung robuster Anpassungsstrategien bestmöglich unterstützen. / Diante do desafio de garantir o abastecimento de água potável da capital federal do Brasil, o projeto denominado IWAS/ÁguaDF tem como objetivo prover conhecimento científico para o desenvolvimento de um conceito de Gestão Integrada dos Recursos Hídricos (PGIRH). Afim de atingir esta proposta, o projeto é organizado em multiplos grupos de trabalho entre os quais o clima é considerado um dos principais fatores de influência. O sistema de abastecimento de água do Distrito Federal (DF) depende praticamente de três complexos: bacias hidrográficas, águas residuais e água potável. Mudanças climáticas causadas por ações antropogênicas apresentam um enorme potencial de impacto a estes complexos, por exemplo através de alterações no regime de chuvas, perda de volume dos reservatórios por assoriamento e aumento na demanda de água. Como contribuição ao projeto IWAS/ÁguaDF, este estudo tem como foco o desenvolvimento de projeções de mudanças climáticas para estudo de impacto nos recursos hídricos na escala local/regional. O nível de complexidade corresponde diretamente às questões levantadas pelos modeladores de impacto, bem como aspecto técnicos como a disponibilidade de dados observados e recursos humanos e computacionais. A identificação das necessidades de questões relacionadas à água no DF dão a base para derivar projeções climáticas adequadas. Antes de qualquer projeção futura, é indispensável avaliar as condições atuais do clima, também chamado de linha de base do clima. Além de fornecer a compreenção dos aspectos regionais do clima e mudaças em curso, a linha de base provê dados para a calibração e validação de modelos globais de clima e técnicas de regionalização (downscaling). Os Modelos de Circulação Geral (GCM) são as ferramentas mais adotadas na simulação da resposta do sistema climático às atividades antropogênicas, tais como aumento de emissões de gases do efeito estufa e aerosóis. No entanto, a informação necessária para estudos regionais de impacto, tais como gestão de recursos hídricos, é de escala espacial mais refinada do que a resolução espacial fornecida pelos GCMs e, dessa forma, técnicas de regionalização são frequentemente demandadas. Modelos hidrológicos são geralmente sensitivos à variabilidade temporal de precipitação em escalas não representadas pelos modelos globais. Métodos estatísticos de ‘downscaling’ apresentam um potencial para auxiliar no descompasso entre GCMs e modelos de impacto através da adição de variabilidade local consistente com o sinal de larga escala e as observações locais. A ferramenta utilizada (Statistical DownScaling Model - SDSM) é descrita como um híbrido entre regressão linear e gerador de tempo estocástico. A calibração sistemática adotada fornece apropriados preditores e uma parameterização consistente. O procedimento de validação do modelo leva em conta as métricas relevantes aos requerimentos dos estudos hidrológicos. Ainda, a abordagem aqui utilizada considera diversos modelos globais (isto é, 18 GCMs) e cenários de emissões (isto é, SRES A1B, A2 e B1) afim de contemplar as mais abrangentes fontes de incertezas disponíveis. Embora o elevado nível de incertezas na magnitude das mudançãs de clima, a grande maioria das projeções regionalizadas concordam com o aumento de temperatura e precipiatação para o período de 2046-2065 quando comparado com o período de referência (isto é, 1980-1999). Grandes conjuntos de projeções são preferíveis, mas são frequentement associados com uma quantidade exorbitante de dados os quais são de aplicação limiatada nos estudos de impacto. Uma alternativa é identificar sub-conjuntos de projeções que são as mais prováveis e projeções que são menos prováveis, porém apresentam maior impacto. Embora altas resoluções são preferíveis, estas baseiam-se em hipóteses inerentes às observações e projeções de larga escala e, dessa forma, não é recomendável o seu uso sozinho. A combinação do clima de base com projeções de resoluções baixas e altas fornece um amplo envelope de imformações climáticas para avaliar a sensitividade dos sistemas hidrológicos no DF. Um compreendimento mais apurado da vunerabilidade dos sistemas hidrológicos através da aplicação de multiplas fontes de informação e apropriada abordagem das incertezas conhecidas é talvez a melhor maneira para contribuir para o desenvolvimento de estratégias robustas de adaptação.
10

Development of regional climate change projections for hydrological impact assessments in distrito federal, Brazil

Borges de Amorim, Pablo 10 March 2015 (has links)
Facing the urgency of taking actions to guarantee the water supply to Brazil's Capital, the project called IWAS/ÁguaDF aims to provide scientific knowledge for the development of an Integrated Water Resources Management (IWRM) concept. The project is organized in multiple working groups wherein climate is considered as one of the main drivers. The water supply system of Distrito Federal (DF) is mainly dependent on three major complexes: river basins, waste water and drinking water. Anthropogenic climate change has the potential to affect these water complexes in a number of ways such as by losing storage capacity due to erosion and sedimentation, through altered persistency of dry events and due to increasing water demand. As a contribution to the IWAS/ÁguaDF project, this study focuses on the development of climate change projections for hydrological impact assessments at local/regional scale. The development of proper climate information is a challenging task. The level of complexity corresponds directly to the issues that concern impact modellers as well as technical aspects such as available observational data, human and computational resources. The identification of the needs for water-related issues gives the foundation for deriving proper climate projections. Before making projections, it is necessary to assess the current climate conditions, or baseline climate. Despite a better understanding of the regional aspects of the climate and the ongoing changes, the baseline climate provides the foundation for calibrating and validating climate models and downscaling methods. The General Circulation Models (GCMs) are the most preferred tools in simulating the response of the climate system to anthropogenic activities, like increasing greenhouse gases and aerosol emissions. However, the climate information required for regional impact studies, such as water resources management in DF, is of a spatial scale much finer than that provided by GCMs and therefore often demands a downscaling procedure. Hydrological models are usually sensitive to the temporal variability of precipitation at scales that are not well represented by GCMs. Statistical downscaling methods have the potential to bridge the mismatch between GCMs and impact models by adding local variability that is consistent with both the large-scale signal and local observations. The tool used (i.e., Statistical DownScaling Model - SDSM) is described as a hybrid of regression-based and stochastic weather generator. The systematic calibration adopted provides the appropriated predictors and model parameterization. The validation procedure takes into account the metrics relevant to the requirements of hydrological studies. Moreover, the downscaling approach considers several climate models (i.e., 18 GCMs) and emission scenarios (i.e., SRES A1B, A2, B1) in order to sample the widest sources of uncertainties available. In spite of the elevated level of uncertainties in the magnitude of change, most of the downscaled projections agree with positive changes in temperature and precipitation for the period of 2046-2065 when compared to the reference period (i.e., 1980-1999). Large ensembles are preferable but are often associated with massive amount of data which have limited application in hydrological impact studies. An alternative is to identify subsets of projections that are most likely and projections that have lower likelihood but higher impact. A set of representative climate projections is suggested for hydrological impact assessments. Although high resolution information is preferable, it relies on limited assumptions inherent to observations and coarse-resolution projections and, therefore, its use alone is not recommended. The combination of the baseline climate with large- and local-scale projections achieved in this study provides a wide envelope of climate information for assessing the sensitivity of hydrological systems in DF. A better understanding of the vulnerability of hydrological systems through the application of multiple sources of climate information and appropriate sampling of known uncertainties is perhaps the best way to contribute to the development of robust adaptation strategies. / Starkes Bevölkerungswachstum sowie Landnutzungs- und Klimawandel gefährden die Wasserversorgung der Metropolregion Brasília. Vor diesem Hintergrund soll das Projekt IWAS/ÁguaDF die wissenschaftlichen Grundlagen für ein Integriertes Wasserressourcen-Management (IWRM) im Distrito Federal (DF) erarbeiten. Das Projekt gliedert sich in drei klimasensitive Bereiche: Einzugsgebietsmanagement, Abwasseraufbereitung und Trinkwasserversorgung. Klimaänderungen können die Wasserversorgung im DF vielfältig beeinflussen, durch Veränderung der speicherbaren Wassermenge (Wasserdargebot, Speicherkapazität von Talsperren durch Sedimentation), der Dauer von Dürreperioden und des Wasserbedarfs (z.B. für Bewässerung). Klimaprojektionen für regionale hydrologische Impaktstudien stellen jedoch eine große Heraus-forderung dar. Ihre Komplexität richtet sich nach dem Bedarf des Impaktmodellierers und hängt zudem von technischen Voraussetzungen ab, wie der Verfügbarkeit von Beobachtungsdaten sowie von Personal- und Rechenressourcen. Die Ableitung geeigneter Maßnahmen für ein nachhaltiges Wasserressourcenmanagement im DF stellt hohe Ansprüche an die Qualität der zu entwickelnden Klimaprojektionen. Noch vor der Projektion müssen die gegenwärtigen klimatischen Bedingungen (Referenzklima) analysiert und bewertet werden. Die Analyse des Referenzklimas ermöglicht ein besseres Verständnis regionaler Unterschiede und aktueller Tendenzen und bildet die Grundlage für die Kalibrierung und Validierung von Klimamodellen und Downscaling-Methoden. Globale Klimamodelle (GCM) simulieren die Reaktion des Klimasystems auf anthropogene Treibhausgas- und Aerosolemissionen. Ihre räumliche Auflösung ist jedoch meist zu grob für regionale Klimaimpaktstudien. Zudem reagieren hydrologische Modelle meist sehr sensitiv auf zeitlich variable Niederschläge, welche in hoher zeitlicher Auflösung (Tagesschritte) ebenfalls nur unzureichend in GCM abgebildet werden. Statistische Downscaling-Verfahren können diese Inkohärenz zwischen GCM und Impaktmodellen reduzieren, indem sie das projizierte Klimasignal um lokale Variabilität (konsistent gegenüber den Beobachtungen) erweitern. Das in der vorliegenden Arbeit verwendete Tool, Statistical DownScaling Model - SDSM, vereint regressionsbasierte und stochastische Methoden der Wettergenerierung. Geeignete Prädiktoren und Modelparameter wurden durch systematische Kalibrierung bestimmt und anschließend validiert, wobei unter anderem auch hydrologisch relevante Gütekriterien verwendet wurden. Der gewählte Downscaling-Ansatz berücksichtigt zudem eine Vielzahl verschiedener Globalmodelle (18 GCM) und Emissionsszenarien (SRES A1B, A2 und B1) um die mit Klimaprojektionen verbundene hohe Unsicherheit möglichst breit abzudecken. Die Mehrheit der regionalen Projektionen weist auf eine Zunahme von Temperatur und Niederschlag hin (Zeitraum 2046 bis 2065 gegenüber Referenz-zeitraum, 1980 bis 1999), wenngleich die Stärke des Änderungssignals stark über das Ensemble variiert. Große Modellensemble sind zwar von Vorteil, sie sind jedoch auch mit einer erheblichen Datenmenge verbunden, welche für hydrologische Impaktstudien nur begrenzt nutzbar ist. Alternativ können einzelne „wahrscheinliche“ Projektionen verwendet werden sowie Projektionen, die weniger wahrscheinlich, aber mit einem starken Impakt verbunden sind. Ein solcher Satz repräsentativer Klimaprojektionen wurde für weitergehende Impaktstudien ausgewählt. Auch wenn in der Regel hochaufgelöste Klimaprojektionen angestrebt werden, ihr alleiniger Einsatz in Impaktstudien ist nicht zu empfehlen, aufgrund der vereinfachten Annahmen über die statistische Beziehung zwischen Beobachtungsdaten und den Modellergebnissen grob aufgelöster Globalmodelle. Der Vergleich des Referenzklimas mit großräumigen und lokalen Projektionen, wie er in dieser Arbeit durchgeführt wurde, liefert ein breites Spektrum an Klimainformationen zur Bewertung der Vulnerabilität hydrologischer Systeme im DF. Die Einbeziehung einer Vielzahl vorhandener Klimamodelle und die gezielte, den ermittelten Unsicherheitsbereich vollständig abdeckende Auswahl an Projektionen sollte die Entwicklung robuster Anpassungsstrategien bestmöglich unterstützen. / Diante do desafio de garantir o abastecimento de água potável da capital federal do Brasil, o projeto denominado IWAS/ÁguaDF tem como objetivo prover conhecimento científico para o desenvolvimento de um conceito de Gestão Integrada dos Recursos Hídricos (PGIRH). Afim de atingir esta proposta, o projeto é organizado em multiplos grupos de trabalho entre os quais o clima é considerado um dos principais fatores de influência. O sistema de abastecimento de água do Distrito Federal (DF) depende praticamente de três complexos: bacias hidrográficas, águas residuais e água potável. Mudanças climáticas causadas por ações antropogênicas apresentam um enorme potencial de impacto a estes complexos, por exemplo através de alterações no regime de chuvas, perda de volume dos reservatórios por assoriamento e aumento na demanda de água. Como contribuição ao projeto IWAS/ÁguaDF, este estudo tem como foco o desenvolvimento de projeções de mudanças climáticas para estudo de impacto nos recursos hídricos na escala local/regional. O nível de complexidade corresponde diretamente às questões levantadas pelos modeladores de impacto, bem como aspecto técnicos como a disponibilidade de dados observados e recursos humanos e computacionais. A identificação das necessidades de questões relacionadas à água no DF dão a base para derivar projeções climáticas adequadas. Antes de qualquer projeção futura, é indispensável avaliar as condições atuais do clima, também chamado de linha de base do clima. Além de fornecer a compreenção dos aspectos regionais do clima e mudaças em curso, a linha de base provê dados para a calibração e validação de modelos globais de clima e técnicas de regionalização (downscaling). Os Modelos de Circulação Geral (GCM) são as ferramentas mais adotadas na simulação da resposta do sistema climático às atividades antropogênicas, tais como aumento de emissões de gases do efeito estufa e aerosóis. No entanto, a informação necessária para estudos regionais de impacto, tais como gestão de recursos hídricos, é de escala espacial mais refinada do que a resolução espacial fornecida pelos GCMs e, dessa forma, técnicas de regionalização são frequentemente demandadas. Modelos hidrológicos são geralmente sensitivos à variabilidade temporal de precipitação em escalas não representadas pelos modelos globais. Métodos estatísticos de ‘downscaling’ apresentam um potencial para auxiliar no descompasso entre GCMs e modelos de impacto através da adição de variabilidade local consistente com o sinal de larga escala e as observações locais. A ferramenta utilizada (Statistical DownScaling Model - SDSM) é descrita como um híbrido entre regressão linear e gerador de tempo estocástico. A calibração sistemática adotada fornece apropriados preditores e uma parameterização consistente. O procedimento de validação do modelo leva em conta as métricas relevantes aos requerimentos dos estudos hidrológicos. Ainda, a abordagem aqui utilizada considera diversos modelos globais (isto é, 18 GCMs) e cenários de emissões (isto é, SRES A1B, A2 e B1) afim de contemplar as mais abrangentes fontes de incertezas disponíveis. Embora o elevado nível de incertezas na magnitude das mudançãs de clima, a grande maioria das projeções regionalizadas concordam com o aumento de temperatura e precipiatação para o período de 2046-2065 quando comparado com o período de referência (isto é, 1980-1999). Grandes conjuntos de projeções são preferíveis, mas são frequentement associados com uma quantidade exorbitante de dados os quais são de aplicação limiatada nos estudos de impacto. Uma alternativa é identificar sub-conjuntos de projeções que são as mais prováveis e projeções que são menos prováveis, porém apresentam maior impacto. Embora altas resoluções são preferíveis, estas baseiam-se em hipóteses inerentes às observações e projeções de larga escala e, dessa forma, não é recomendável o seu uso sozinho. A combinação do clima de base com projeções de resoluções baixas e altas fornece um amplo envelope de imformações climáticas para avaliar a sensitividade dos sistemas hidrológicos no DF. Um compreendimento mais apurado da vunerabilidade dos sistemas hidrológicos através da aplicação de multiplas fontes de informação e apropriada abordagem das incertezas conhecidas é talvez a melhor maneira para contribuir para o desenvolvimento de estratégias robustas de adaptação.

Page generated in 0.0563 seconds