1 |
Guidelines for design of an integrated instream water reclamation system supported by a high-performance aeration weirBayoumi, Mohamed Nabil January 1997 (has links)
No description available.
|
2 |
Advancing Monitoring and Mitigation of Antibiotic Resistance in Wastewater Treatment Plants and Water Reuse SystemsMajeed, Haniyyah JaRae 22 October 2020 (has links)
Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antibiotics, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens, thus serving as key point of interest for the surveillance of antibiotic resistance (AR) dissemination. This thesis advances knowledge about the fate of AR indicators throughout treatment and reuse.
The field study informs approaches for monitoring AR at a WWTP by characterizing the resistome (i.e., full profile of ARGs) and microbiome across eight sampling events via metagenomic sequencing, complemented by antibiotic data. The WWTP significantly reduced the total load of ARGs and antibiotics, although correlations between ARGs and antibiotics were generally weak. Quantitative polymerase chain reaction was applied to validate the quantitative capacity of metagenomics, whereby we found strong correlations. The influent and effluent to the WWTP were remarkably stable with time, providing further insight into the sampling frequency necessary for adequate surveillance.
The laboratory study examined the effects of commonly applied disinfection processes (chlorination, chloramination, and ultraviolet irradiation [UV]) on the inactivation of antibiotic resistant pathogens and corresponding susceptible pathogens in recycled and potable water. Further, we evaluated their regrowth following disinfection by simulating distribution. Acinetobacter baumannii, an environmental opportunistic pathogen, regrew especially well following UV disinfection, although not when a disinfectant residual was present. Enterococcus faecium, a fecal pathogen, did not regrow following any disinfection process. There were no significant differences between water types. The findings of this study emphasize a need to move beyond the framework of assessing treatment efficacy based on the attenuation of fecal pathogens. / Master of Science / Wastewater treatment plants (WWTPs) have traditionally been designed and further enhanced to minimize environmental contamination caused by solid waste, fecal pathogens, nutrients (e.g., nitrogen), and organic matter. However, treatment has not been optimized to remove the contaminants of emerging concern (CECs) investigated in this thesis: antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotics. WWTPs are key point of interest for local and global surveillance of antibiotic resistance as they can receive the aforementioned CECs (via human excretion or improper disposal) from various sources (e.g., residences, hospitals). Antibiotic resistant bacteria have caused 2.8 million infections and subsequently 35,000 deaths in the United States each year. Considering treated wastewater can serve as a route of exposure for humans, potential spread of antibiotic resistance by WWTPs is of high priority to mitigate from a public health perspective.
In the first study utilizing a technology to assess the full complement of ARGs in a given sample, we observed that the total load of ARGs was removed by approximately 50% across wastewater treatment, on average; total antibiotic load exhibited a similar reduction. The second study demonstrated that antibiotic resistant environmental opportunistic pathogen (i.e., pathogens which take advantage of the "opportunity" to infect an immunocompromised host, especially thriving in low nutrient engineered systems), Acinetobacter baumannii, possesses the ability to regrow following disinfection in the absence of a disinfectant residual. In contrast, antibiotic resistant Enterococcus faecium, an opportunistic pathogen of fecal origin, was successfully inactivated and unable to regrow. The findings of this study emphasize a need to move beyond the framework of assessing treatment efficacy based on the attenuation of fecal pathogens.
|
3 |
Development of analytical methods for the determination of volatile fatty acids in wastewaterMkhize, Nontando T. 09 December 2013 (has links)
M.Sc. (Chemistry) / Volatile fatty acids (VFAs) play a pivotal in the process of nutrient removal by biological processes particularly the enhanced biological nutrient removal process with a side-stream elutriation process using activated sludge. These acids are said to act as intermediates which provide feed for the organisms in a biological phosphorus and nitrogen removal (BNPR) system, such as phosphorus-accumulating organisms (PAOs) and nitrate-accumulating bacteria (NABs). In wastewater treatment plants, VFAs play a vital role as intermediate organic compounds during the fermentation processes which generate methane gas and when present at elevated levels they are known to cause microbial stress, acidification as well as the poor performance of anaerobic digesters. For these reasons, the routine monitoring of VFA levels in wastewater treatment plants is crucial as they will act as indicators of the efficiency and optimal operation performance of the anaerobic digesters. Normally the VFAs that are commonly produced during the anaerobic fermentation process include acetic acid, propionic acid, butyric acid, and valeric acid and of these, acetic and propionic acids form the major VFAs that are generated, thus the yields of these two compounds provide a useful measure of the anaerobic digester performance. For example, the ratio of propionic acid to acetic acid is always used as an indicator of digester imbalance while high concentrations of acetic acid (e.g. > 800 mg/ℓ) or a propionic acid to acetic acid ratio greater than 1.4 is an indication of digester failure. This study was thus aimed at establishing the complete VFA profile at the Johannesburg Water (JW) Northern Works Wastewater Treatment Plant in Johannesburg, South Africa, by developing analytical methods to quantify the VFAs in the wastewater treatment plant. In addition, the level of VFAs quantified was used to evaluate the efficiency of the fermentation treatment process in wastewater treatment systems in order to give an indication of the bacterial activities in the systems; to determine the ratios of the VFAs, especially the propionic acid to acetic acid ratio, to establish the performance and efficiency of various wastewater treatment plants; and to determine whether there is any imbalance in the anaerobic digesters. Two analytical methods for the determination of VFAs were successfully developed and applied to real wastewater samples. The first method developed was a liquid-liquid extraction method using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS. The method involved two extracting solvents, namely dichloromethane (DCM) and methyl-tert-butyl ether (MTBE). The extraction capacity of these two solvents was compared. The second method successfully developed and optimised headspace-solid phase microextraction (HS-SPME) using GC-TOF-MS. The microextraction fibre used was a polydimethylsiloxane (PDMS) fibre. Studies to validate the developed methods were also carried out by calculating the limit of detection (LOD) and limit of quantification (LOQ). Ratios of propionic acid to acetic acids were determined as well as the concentrations of acetic acid for both developed methods in order to evaluate the performance and efficiency of the treatment process. The results of the study show that the extraction procedure using solvents DCM and MTBE showed that exhaustive extraction was achieved by MTBE. Higher concentrations of acetic acid and propionic acid were obtained by MTBE. The overall fermentation performance for all three units in the period when the samples were collected, which was measured by the ratio of propionic to acetic acid was good since the ratio did not exceed 1.4. The acetic acid concentration in mg/ℓ was < 800 mg/ℓ for all units thus it can be said that the reactor balance was maintained for the period studied. The method LOD ranged from 0.034 mg/ℓ to 0.21 mg/ℓ and the method LOQ ranged from 0.11 mg/ℓ to 0.70 mg/ℓ. Optimisation of extraction parameters was achieved for headspace solid-phase microextraction using the PDMS fibre method. The extraction method was conducted for 60 min using a sample volume of 4 mℓ and the amount of sodium salt added was 1.50 g. The desorption temperature and time was 210ºC and 5 min, respectively. The LOD values ranged from 0.079 to 2.07. The PDMS fibre was found to be suitable for extracting higher carbon chain fatty acids as compared to lower carbon chain fatty acids. The plant performance for the period studied was on par as indicated by ratios of propionic acid to acetic acid which all fell below 1.4. There were no digester failures for the period studied. The acetic acid concentration in mg/ℓ was < 800 mg/ℓ for all 3 units.
|
4 |
Occurrence and Control of Microbial Contaminants of Emerging Concern through the Urban Water Cycle: Molecular Profiling of Opportunistic Pathogens and Antibiotic ResistanceGarner, Emily 26 March 2018 (has links)
In an era of pervasive water stress caused by population growth, urbanization, drought, and climate change, limiting the dissemination of microbial contaminants of emerging concern (MCECs) is of the utmost importance for the protection of public health. In this dissertation, two important subsets of MCECs, opportunistic pathogens (OP) and antibiotic resistant genes (ARG), are studied across several compartments of the urban water cycle, including surface water, stormwater, wastewater, recycled water, and potable water. Collectively, this dissertation advances knowledge about the occurrence of OPs and ARGs across these water systems and highlights trends that may be of value in developing management strategies for limiting their regrowth and transmission.
Field studies of two surface water catchments impacted by stormwater runoff demonstrated the prevalence of ARGs in urban stormwater compared to pristine, unimpacted sites, or to days when no precipitation was recorded. The role of wastewater reuse in transmitting OPs and ARGs was also investigated. Traditional tertiary wastewater treatment plants producing water for non-potable use were found to be largely ineffective at removing ARGs, but plants using advanced oxidation processes or ozonation paired with biofiltration to produce direct potable reuse water were highly effective at removing ARGs. Non-potable reclaimed water consistently had greater quantities of sul1, a sulfonamide ARG, and Legionella and Mycobacterium, two OPs of significant public health concern, present than corresponding potable systems. Limited regrowth of OPs and ARGs did occur in simulated premise (i.e., building) plumbing systems operated with direct potable reuse waters, but regrowth was comparable to that observed in systems fed with potable water derived from surface or groundwater. Advancements were also made in understanding the role of several hypothesized driving forces shaping the antibiotic resistome in natural and engineered water systems: selection by antimicrobials and other compounds, horizontal gene transfer, and microbial community composition. Finally, whole-genome and metagenomic characterization were applied together towards profiling L. pneumophila in clinical and water samples collected from Flint, Michigan, where an economically-motivated switch to an alternative water source created conditions favorable for growth of this organism and likely triggered one of the largest Legionnaires' Disease outbreaks in U.S. history. / PHD / Population growth, urbanization, drought, and climate change have all driven many U.S. municipalities to utilize alternative water sources, such as recycled wastewater, to offset demand on traditional potable water sources. Many water providers have moved towards a modern paradigm of utilizing multiple available water sources, recognizing the interconnectedness of various components of the urban water cycle, leading to opportunities to improve sustainability, optimize infrastructure use, stimulate economic growth, increase coordination among water agencies, and identify new water resources from which to meet consumer needs. Though advancements in treatment technologies throughout the twentieth century have largely succeeded in eliminating waterborne disease outbreaks associated with contamination of municipal water supplies by fecal pathogens in developed countries, several microbial contaminants of emerging concern (MCECs) have garnered attention.
Two major groups of MCECs are considered in this dissertation: antibiotic resistance, including antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG), and opportunistic pathogens (OP), such as Legionella pneumophila, the causative agent of Legionnaires’ Disease. ARB are a rising cause of disease around the world and are a major challenge to modern medicine because they make antibiotics used for treatment ineffective. OPs, the leading cause of waterborne disease in the U.S. and other developed countries, have become prevalent in engineered water systems where low nutrient concentrations, warm water temperatures, and long stagnation times can facilitate their growth. Immunocompromised people, including smokers and the elderly, are especially vulnerable to infection with OPs. The role of the urban water cycle in facilitating the spread of these MCECs is not well understood. Here they were studied across several compartments of the urban water cycle, including surface water, stormwater, wastewater, recycled water (spanning a variety of intended uses, from non-potable to direct potable reuse), and potable water.
Field studies were conducted of two watersheds impacted by stormwater runoff, one in the arid Colorado Front Range under conditions of a rare, 1-in-1,000 year rainfall event, and one in the humid climate of southwest Virginia, during three summer storms. Both studies demonstrated the prevalence of ARGs in urban stormwater compared to pristine, unimpacted sites, or to days when no precipitation was recorded.
The role of wastewater reuse in transmitting OPs and ARGs was also investigated. Wastewater treatment plants producing water for non-potable use (i.e. applications such as irrigation, but not for human consumption) were found to be largely inefficient at removing ARGs, and this reclaimed water consistently had greater quantities of the sul1 ARG present than in corresponding potable systems. In these systems, genes associated with the OPs Legionella and Mycobacterium as well as total bacteria were more abundant in reclaimed water than in corresponding potable systems. In more advanced treatment plants utilizing advanced oxidation processes or ozonation paired with biofiltration to produce direct potable reuse water (i.e. water fit for human consumption), ARGs were very effectively removed by treatment, with abundances often found to be higher in corresponding potable waters derived from surface or groundwater. Limited regrowth of ARGs as well as OPs did occur in simulated home plumbing systems operated with these waters, but regrowth was comparable to that observed in systems fed with potable water derived from surface or groundwater.
Finally, a study of L. pneumophila in the Flint, Michigan drinking water system during use of an alternative water source that has been identified as a likely cause of two Legionnaires’ Disease outbreaks revealed presence of multiple strains of the OP in the system. Genomic comparisons revealed that strains isolated from hospital and residential water samples were highly similar to clinical strains associated with the outbreaks.
Advancements were also made in understanding the role of several hypothesized driving forces in shaping the antibiotic resistome in natural and engineered water systems: selection by antimicrobials and other compounds, horizontal gene transfer, and microbial community composition. Together, these chapters describe an advancement in knowledge regarding the occurrence of OPs and ARGs in a variety of water systems, and highlight trends that may be of value in developing management strategies for limiting regrowth or transmission of these bacteria in various compartments of the urban water cycle.
|
5 |
Technical Possibilities of Wastewater Reclamation for Potable Use in Hurva, Scania : Regarding the Waterbalance and From a Process Technical Point of ViewFrihammar, Esmeralda January 2020 (has links)
During recent years both Sweden and the rest of Europe have experienced periods of drought as a consequence of hot summers with low levels of precipitation. For villages provided with drinking water from water plants with groundwater as raw water source droughts can lead to considerable problems if the groundwater reservoir would be affected. One Swedish village which is provided with drinking water from a groundwater drinking plant and which has faced problems regarding their drinking water production is Hurva, located outside of Eslöv in Scania and with a population of almost 400 people. The problem has been periods of water shortage in the drinking water system. The solution to this problem has consisted in filling up the water reservoir in the drinking water system with drinking water delivered in trucks. This is not considered a sustainable solution to the problem and a transmission pipe connecting Hurva to the regional drinking water system has been suggested. This project is written in collaboration with VA SYD, the joint municipal authority in Hurva, and consisted of two main objectives. The first objective was to examine the possibilities of implementation of a circular wastewater system in Hurva from a process technical and health and safety point of view. The second objective was to estimate the waterbalance in the system to make sure that there was enough water for a circular water system. According to the calculations regarding the waterbalance estimation there has been enough water in the system every month of the period January 2018-December 2019 with exception for June 2018 which was a month with extreme droughts in Sweden. The results indicates that there is a risk for water shortage in the system although this is probably not the case for months with normal conditions. Two possible treatment chains was designed, based on the requirement that they should have the capacity to treat the wastewater from Hurva WWTP into drinking water quality. The first chain, treatment chain 1 consisted of ultrafiltration, reversed osmosis, granular activated carbon, pH/hardness adjustment and UV treatment. The second chain, treatment chain 2, consisted of ultrafiltration, ozonation, granular activated carbon and UV treatment. / Under de senaste åren har både Sverige och övriga Europa upplevt perioder av torka till följd av varma somrar med lite nederbörd. För byar som förses av dricksvatten från vattenverk med grundvatten som råvattenkälla kan torka leda till stora problem om grundvattenreservoaren blir påverkad. En by som förses med dricksvatten från ett grundvattenverk och som stött på problem gällande dricksvattenproduktionen under de senaste åren är Hurva, som är beläget utanför Eslöv i Skåne och har en befolkning på strax under 400 personer. Problemen har bestått i att det inte alltid funnits tillräckligt mycket vatten i grundvattenmagasinet. Vid dessa tillfällen har lösningen varit att fylla på drickvattenreservoaren med dricksvatten transporterat i lastbilar från ett annat vattenverk. Detta anses inte som en hållbar lösning och ett förslag har lagts fram om att koppla på Hurva till det regionala dricksvattennätet med hjälp av en överföringsledning. Detta projekt har utförts i samarbete med VA SYD, som är VA-huvudman i Hurva. Projektets syfte var att undersöka möjligheterna till att implementera ett cirkulärt dricksvattsystem med avloppsvatten som primär råvattenkälla i Hurva utifrån två huvudaspekter. Den första delen av projektet handlade om att beräkna vattenbalansen i systemet för att underöka om det finns tillräckligt med vatten. I den andra delen undersöktes möjligheterna till att implementera ett cirkulärt vattenverk i Hurva utifrån processtekniska aspekter samt hälso- och säkerhetsaspekter. Enligt beräkningar av vattenbalans har det funnits tillräckligt mycket vatten i systemet för alla månader mellan januari 2018 och december 2019 med undantag för juni 2018, vilket var ett extremt torrt år i Sverige. Utifrån resultaten kan slutsatsen dras att under normala år har det funnits tillräckligt mycket vatten för att kunna implementera ett cirkulärt dricksvattensystem men att det föreligger en viss risk för vattenbrist i torra perioder. Två möjliga vattenverk, i rapporen kallade treatment chain 1 och treatment chain 2, togs fram. Båda verken designades för att uppfylla kravet om att ha kapacitet att rena avloppsvattnet från Huvas reningsverk till dricksvattenkvalitet. Treatment chain 1 bestod av följande 5 behandlingssteg: ulftrafiltrering, omvänd osmos, granulärt aktivt kol, hårdhet+pH justering och UV disinfektion. För treatment chain 2 valdes följande 4 behandlingssteg: ulftrafiltrering, ozonering, granulärt aktivt kol och UV disinfektion.
|
6 |
Qualité biologique des eaux usées traitées en vue de la réutilisation / Biological quality of treated wastewater with the aim of reclamationCarré, Erwan 06 July 2017 (has links)
La réutilisation des eaux usées traitées (REUT) constitue une ressource alternative pérenne et à fort potentiel notamment pour les régions soumises à un stress hydrique. L’objectif général de cette thèse est de définir les conditions nécessaires pour garantir la fiabilité d’une filière de traitement tertiaire pour la réutilisation. La première partie s’intéresse aux limites des méthodes de dénombrement des microorganismes indicateurs couramment employées, notamment en lien avec la contamination particulaire des effluents. Les résultats indiquent qu’il existe un risque de sous-estimation par ces méthodes pour de fortes charges en matières en suspension.La désinfection par rayonnement ultraviolet (UV) est souvent employée pour garantir la qualité sanitaire de l’eau distribuée. La deuxième partie de cette thèse vise à comprendre les mécanismes pouvant affecter l’efficacité des UV. Une corrélation linéaire a pu être mise en évidence entre la contamination particulaire des effluents à traiter et la baisse d’efficacité de la désinfection UV, caractérisée d’une part par la diminution de la constante d’inactivation des microorganismes exposés aux UV et d’autre part par le risque d’apparition d’un effet de traîne (fraction de microorganismes insensibles aux UV).La mise en place d’un prétraitement par filtration s’avère donc nécessaire en amont de la désinfection UV. La troisième partie de cette thèse a permis de définir les paramètres opératoires les plus adaptés à l’effluent. Enfin, le contrôle de la qualité sur l’ensemble de la filière est envisagé, avec notamment la démonstration de faisabilité d’un système de surveillance en continu basé sur la spectrométrie UV/Visible. / Wastewater reclamation is an ongoing and promising alternative resource in a context of water stress. In particular, this is a major issue in the Mediterranean region, and its effects tend to be intensified by global warming. The main objective of this PhD thesis is to define the conditions for ensuring the reliability of a tertiary treatment chain for wastewater reclamation. The first part deals with the limits of the methods used in routine for the enumeration of indicator microorganisms, in relation with particulate contamination. The results indicate that there is a risk of underestimation by these methods for high loads of suspended matter.Ultraviolet (UV) disinfection has been used for years to ensure the biological safety of reclaimed water. The second part of this work aims to understand the mechanisms which may affect the efficiency of UV disinfection. A linear relationship has been observed between the particulate contamination of the effluents to be treated and the disinfection efficiency loss, featured on one hand by the decrease of the inactivation constant of the microorganisms and on the other hand by the risk of tailing (UV-resistant fraction among the microorganisms).The implementation of a pre-filtration is thus necessary before UV disinfection. The third part of this work enabled to identify the filtration parameters suited for the effluents to be treated. Finally, quality control on the whole chain is considered, in particular with the demonstration of feasibility of a continuous control system based on UV/Visible spectrometry.
|
7 |
Innovative Desinfektionsverfahren zur Brauchwassergewinnung in der dezentralen Abwasserbehandlung - Elektrolyse und UV/Elektrolyse-HybridtechnikHaaken, Daniela 10 August 2015 (has links) (PDF)
According to estimates of the United Nations Environment Programme (UNEP), more than 1.8 billion people will be living in countries or regions with absolute water scarcity by 2025. The pressure on water resources is increased not only in arid and semiarid regions, but also in fast growing megacities around the world as a result of, amongst other factors, the changing nutritional and consumer behavior (rising living standards). Over 90 % of the annual water consumption of the newly industrializing and developing countries in the arid and semiarid climate zone is used for agricultural irrigation to ensure the nutrition of the population. Thus, since the beginning of the 20th century, the planned/controlled reuse of wastewater has developed into a central task of the sustainable water resources management. Wastewater represents a valuable resource in view of its composition (e. g. nutrients P, N for soil fertilizing) and its reliable, weather-independent availability in every household. The establishment of a closed-loop water management can enhance the efficiency of water usage. Therefore, activities in research and development are currently focused on decentralized and semi-centralized concepts, since their structures offer better conditions for the establishment of closed-loop systems and innovations in wastewater technology can be implemented more easily.
In general, the hygienic quality requirements for wastewater reuse are predominantly oriented towards the planned usage. These are, in turn, regulated by thresholds and guidance values, e. g. for faecal indicator bacteria (e. g. faecal coliforms: E. coli), in widely differing norms and legal provisions specific to the respective countries. In Germany since 2005, small wastewater treatment plants can obtain the discharge class +H by the German Institute for Civil Engineering (DIBt: Deutsches Institut für Bautechnik) if secondary effluents contain less than 100 faecal coliforms (E. coli) per 100 mL. This ensures a safe effluent seepage in karst and water protection areas. Due to the infectious risk caused by a multitude of pathogens (bacteria, viruses, worm eggs, protozoa) which are still contained in wastewater after mechanical-biological treatment, specific disinfection methods are indispensable for their satisfactory reduction. Demands on disinfection methods for wastewater reclamation are quite complex. They should be characterized by a high and constant disinfection efficiency at low or moderate formation of disinfection by-products. The reclaimed wastewater should be able to be stored safely. Moreover, the disinfection method should be technically simple, scaleable, space-saving, subjected to low maintenance and realized at moderate investment and operating costs without applying external toxic chemicals. Established methods in decentralized wastewater disinfection are mainly based on membrane and UV technologies. However, these methods are currently working under high operating costs (high maintenance and cleaning efforts). Furthermore, the high investment costs of the membrane filtration are disadvantageous. In addition, both methods do not provide a disinfection residual. Thus, further research is required for the development and testing of alternative disinfection technologies. Against this background, the applicability of the electrolysis and UV/electrolysis hybrid technology for the decentralized wastewater reclamation was investigated and assessed in this dissertation.
Results have shown that the electrochemical disinfection of biologically treated wastewater represents an efficient method at temperatures of > 6 °C, pH values of < 8.5 and DOC con-centrations of < 22 mg L-1. Under these conditions, an E. coli reduction of four log levels was achieved at a concentration of free chlorine ranging from 0.4 mg L-1 to 0.6 mg L-1 and at an after-reaction time of 15...20 min. However, it becomes simultaneously apparent that low temperatures, high pH values and high DOC concentrations are limiting parameters for this disinfection method to reclaim biologically treated wastewater. A high energy consumption of the electrolysis cell equipped with boron-doped diamond (BDD) electrodes (2...2.6 kWh m-3) represents a further unfavourable effect. Moreover, the undesired formation of chlorate (c = 1.3 mg L-1) and perchlorate (c = 18 mg L-1) at BDD electrodes can be considered as critical, since these disinfection by-products are, amongst others, human-toxicologically relevant. The concentration of adsorbable organically bound halogens (AOX) and trihalomethanes (THMs) proved to be marginal to moderate.
Due to the synergistic effect of the combined application of UV irradiation (primary disinfection method) and electrolysis, the disadvantages of the single methods can be compensated. Decisive drawbacks of UV irradiation are photo and dark repair mechanisms of reversibly damaged bacteria. It was observed that the reactivation of reversibly UV-damaged E. coli even occurs at low temperatures (T = 10 °C) and strongly differing pH values (pH = 5.7...8.1) as well as at low light intensities and in darkness to an extent excluding a safe usage and storage of the reclaimed wastewater. The reactivation processes might be lowered by increased UV fluences. However, this is limited by high concentrations of total suspended solids (TSS). In spite of high UV fluences of > 400 J m-1, no complete removal of E. coli bacteria can be achieved at TSS concentrations of > 17 mg L-1. Therefore, it is indispensable to prevent bacterial reactivation caused by photo and dark repair processes. This topic was studied in the current work by electrochemically produced oxidants using an electrolysis cell positioned downstream of the UV unit. Results have shown that photo and dark reactivation were completely prevented by oxidants in a total concentration of 0.5...0.6 mg L-1 at a TSS concentration of 8...11 mg L-1, at pH values ranging from 5.7 to 8.1 and at temperatures ranging from 10 °C to 30 °C (t = 24....72 h). Even at a high TSS concentration of 75 mg L-1, the reactivation of E. coli (ctotal oxidants = 1.8 mg L-1) and, up to a TSS concentration of 32 mg L-1, the reactivation of total coliforms (except E. coli, ctotal oxidants = 1.0 mg L-1) can be prevented at a high initial germ concentration of 2…3 105 per 100 mL. The lowest energy consumption could be observed when mixed oxide electrodes (MOX electrodes) were applied. This result and the fact that no chlorate and perchlorate were observed at MOX electrodes argue for the application of these electrodes in practice.
All in all, the UV/electrolysis hybrid technology represents an energy-efficient method for reclamation of biologically treated wastewater with TSS concentrations ranging from < 11 to 32 mg L-1 (E = 0.17…0.24 kWh m-3, MOX electrodes). Thereby, the reclaimed wastewater meet the hygienic quality requirements for a multitude of reuse categories starting from agricultural irrigation to urban and recreational reuse. Moreover, the requirements of the discharge class +H (100 faecal coliforms (E. coli) per 100 mL) are complied with reliably. The operational stability of the UV/electrolysis hybrid technology should also be ensured within the required maintenance intervals (t > 6 months). The undesired formation of coverings caused by biofouling processes on quartz glass surfaces could be prevented by electrochemically produced oxidants in a total concentration of 1 mg L-1 within an experimental duration of 5.5 months.
However, the application of the UV/electrolysis hybrid technology is limited by increased particle concentrations and faecal loadings (initial E. coli concentration). The resulting enhanced demand of electrochemically produced oxidants for the prevention of bacterial reactivation results in a considerable increase of the electric charge input and energy consumption.
|
8 |
Innovative Desinfektionsverfahren zur Brauchwassergewinnung in der dezentralen Abwasserbehandlung - Elektrolyse und UV/Elektrolyse-HybridtechnikHaaken, Daniela 24 April 2015 (has links)
According to estimates of the United Nations Environment Programme (UNEP), more than 1.8 billion people will be living in countries or regions with absolute water scarcity by 2025. The pressure on water resources is increased not only in arid and semiarid regions, but also in fast growing megacities around the world as a result of, amongst other factors, the changing nutritional and consumer behavior (rising living standards). Over 90 % of the annual water consumption of the newly industrializing and developing countries in the arid and semiarid climate zone is used for agricultural irrigation to ensure the nutrition of the population. Thus, since the beginning of the 20th century, the planned/controlled reuse of wastewater has developed into a central task of the sustainable water resources management. Wastewater represents a valuable resource in view of its composition (e. g. nutrients P, N for soil fertilizing) and its reliable, weather-independent availability in every household. The establishment of a closed-loop water management can enhance the efficiency of water usage. Therefore, activities in research and development are currently focused on decentralized and semi-centralized concepts, since their structures offer better conditions for the establishment of closed-loop systems and innovations in wastewater technology can be implemented more easily.
In general, the hygienic quality requirements for wastewater reuse are predominantly oriented towards the planned usage. These are, in turn, regulated by thresholds and guidance values, e. g. for faecal indicator bacteria (e. g. faecal coliforms: E. coli), in widely differing norms and legal provisions specific to the respective countries. In Germany since 2005, small wastewater treatment plants can obtain the discharge class +H by the German Institute for Civil Engineering (DIBt: Deutsches Institut für Bautechnik) if secondary effluents contain less than 100 faecal coliforms (E. coli) per 100 mL. This ensures a safe effluent seepage in karst and water protection areas. Due to the infectious risk caused by a multitude of pathogens (bacteria, viruses, worm eggs, protozoa) which are still contained in wastewater after mechanical-biological treatment, specific disinfection methods are indispensable for their satisfactory reduction. Demands on disinfection methods for wastewater reclamation are quite complex. They should be characterized by a high and constant disinfection efficiency at low or moderate formation of disinfection by-products. The reclaimed wastewater should be able to be stored safely. Moreover, the disinfection method should be technically simple, scaleable, space-saving, subjected to low maintenance and realized at moderate investment and operating costs without applying external toxic chemicals. Established methods in decentralized wastewater disinfection are mainly based on membrane and UV technologies. However, these methods are currently working under high operating costs (high maintenance and cleaning efforts). Furthermore, the high investment costs of the membrane filtration are disadvantageous. In addition, both methods do not provide a disinfection residual. Thus, further research is required for the development and testing of alternative disinfection technologies. Against this background, the applicability of the electrolysis and UV/electrolysis hybrid technology for the decentralized wastewater reclamation was investigated and assessed in this dissertation.
Results have shown that the electrochemical disinfection of biologically treated wastewater represents an efficient method at temperatures of > 6 °C, pH values of < 8.5 and DOC con-centrations of < 22 mg L-1. Under these conditions, an E. coli reduction of four log levels was achieved at a concentration of free chlorine ranging from 0.4 mg L-1 to 0.6 mg L-1 and at an after-reaction time of 15...20 min. However, it becomes simultaneously apparent that low temperatures, high pH values and high DOC concentrations are limiting parameters for this disinfection method to reclaim biologically treated wastewater. A high energy consumption of the electrolysis cell equipped with boron-doped diamond (BDD) electrodes (2...2.6 kWh m-3) represents a further unfavourable effect. Moreover, the undesired formation of chlorate (c = 1.3 mg L-1) and perchlorate (c = 18 mg L-1) at BDD electrodes can be considered as critical, since these disinfection by-products are, amongst others, human-toxicologically relevant. The concentration of adsorbable organically bound halogens (AOX) and trihalomethanes (THMs) proved to be marginal to moderate.
Due to the synergistic effect of the combined application of UV irradiation (primary disinfection method) and electrolysis, the disadvantages of the single methods can be compensated. Decisive drawbacks of UV irradiation are photo and dark repair mechanisms of reversibly damaged bacteria. It was observed that the reactivation of reversibly UV-damaged E. coli even occurs at low temperatures (T = 10 °C) and strongly differing pH values (pH = 5.7...8.1) as well as at low light intensities and in darkness to an extent excluding a safe usage and storage of the reclaimed wastewater. The reactivation processes might be lowered by increased UV fluences. However, this is limited by high concentrations of total suspended solids (TSS). In spite of high UV fluences of > 400 J m-1, no complete removal of E. coli bacteria can be achieved at TSS concentrations of > 17 mg L-1. Therefore, it is indispensable to prevent bacterial reactivation caused by photo and dark repair processes. This topic was studied in the current work by electrochemically produced oxidants using an electrolysis cell positioned downstream of the UV unit. Results have shown that photo and dark reactivation were completely prevented by oxidants in a total concentration of 0.5...0.6 mg L-1 at a TSS concentration of 8...11 mg L-1, at pH values ranging from 5.7 to 8.1 and at temperatures ranging from 10 °C to 30 °C (t = 24....72 h). Even at a high TSS concentration of 75 mg L-1, the reactivation of E. coli (ctotal oxidants = 1.8 mg L-1) and, up to a TSS concentration of 32 mg L-1, the reactivation of total coliforms (except E. coli, ctotal oxidants = 1.0 mg L-1) can be prevented at a high initial germ concentration of 2…3 105 per 100 mL. The lowest energy consumption could be observed when mixed oxide electrodes (MOX electrodes) were applied. This result and the fact that no chlorate and perchlorate were observed at MOX electrodes argue for the application of these electrodes in practice.
All in all, the UV/electrolysis hybrid technology represents an energy-efficient method for reclamation of biologically treated wastewater with TSS concentrations ranging from < 11 to 32 mg L-1 (E = 0.17…0.24 kWh m-3, MOX electrodes). Thereby, the reclaimed wastewater meet the hygienic quality requirements for a multitude of reuse categories starting from agricultural irrigation to urban and recreational reuse. Moreover, the requirements of the discharge class +H (100 faecal coliforms (E. coli) per 100 mL) are complied with reliably. The operational stability of the UV/electrolysis hybrid technology should also be ensured within the required maintenance intervals (t > 6 months). The undesired formation of coverings caused by biofouling processes on quartz glass surfaces could be prevented by electrochemically produced oxidants in a total concentration of 1 mg L-1 within an experimental duration of 5.5 months.
However, the application of the UV/electrolysis hybrid technology is limited by increased particle concentrations and faecal loadings (initial E. coli concentration). The resulting enhanced demand of electrochemically produced oxidants for the prevention of bacterial reactivation results in a considerable increase of the electric charge input and energy consumption.
|
Page generated in 0.1117 seconds