• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture of the Silurian sedimentary cover sequence in the Cadia porphyry Au-Cu district, NSW, Australia : implications for post-mineral deformation

Washburn, Malissa 11 1900 (has links)
Alkalic porphyry style Au-Cu deposits of the Cadia district are associated with Late-Ordovician monzonite intrusions, which were emplaced during the final phase of Macquarie Arc magmatism at the end of the Benambran Orogeny. N-striking faults, including the curviplanar, northerly striking, moderately west-dipping basement thrust faults of the Cadiangullong system, developed early in the district history. NE-striking faults formed during rifting in the late Silurian. Subsequent E-W directed Siluro- Devonian extension followed by regional E-W shortening during the Devonian Tabberabberan Orogeny dismembered these intrusions, thereby superposing different levels porphyry Au-Cu systems as well as the host stratigraphy. During the late Silurian, the partially exhumed porphyry systems were buried beneath the Waugoola Group sedimentary cover sequence, which is generally preserved in the footwall of the Cadiangullong thrust fault system. The Waugoola Group is a typical rift-sag sequence, deposited initially in local fault-bounded basins which then transitioned to a gradually shallowing marine environment as local topography was overwhelmed. Basin geometry was controlled by pre-existing basement structures, which were subsequently inverted during the Devonian Tabberabberan Orogeny, offsetting the unconformity by up to 300m vertically. In the Waugoola Group cover, this shortening was accommodated via a complex network of minor detachments that strike parallel to major underlying basement faults. For this reason, faults and folds measured at the surface in the sedimentary cover can be used as a predictive tool to infer basement structures at depth.
2

Architecture of the Silurian sedimentary cover sequence in the Cadia porphyry Au-Cu district, NSW, Australia : implications for post-mineral deformation

Washburn, Malissa 11 1900 (has links)
Alkalic porphyry style Au-Cu deposits of the Cadia district are associated with Late-Ordovician monzonite intrusions, which were emplaced during the final phase of Macquarie Arc magmatism at the end of the Benambran Orogeny. N-striking faults, including the curviplanar, northerly striking, moderately west-dipping basement thrust faults of the Cadiangullong system, developed early in the district history. NE-striking faults formed during rifting in the late Silurian. Subsequent E-W directed Siluro- Devonian extension followed by regional E-W shortening during the Devonian Tabberabberan Orogeny dismembered these intrusions, thereby superposing different levels porphyry Au-Cu systems as well as the host stratigraphy. During the late Silurian, the partially exhumed porphyry systems were buried beneath the Waugoola Group sedimentary cover sequence, which is generally preserved in the footwall of the Cadiangullong thrust fault system. The Waugoola Group is a typical rift-sag sequence, deposited initially in local fault-bounded basins which then transitioned to a gradually shallowing marine environment as local topography was overwhelmed. Basin geometry was controlled by pre-existing basement structures, which were subsequently inverted during the Devonian Tabberabberan Orogeny, offsetting the unconformity by up to 300m vertically. In the Waugoola Group cover, this shortening was accommodated via a complex network of minor detachments that strike parallel to major underlying basement faults. For this reason, faults and folds measured at the surface in the sedimentary cover can be used as a predictive tool to infer basement structures at depth.
3

Architecture of the Silurian sedimentary cover sequence in the Cadia porphyry Au-Cu district, NSW, Australia : implications for post-mineral deformation

Washburn, Malissa 11 1900 (has links)
Alkalic porphyry style Au-Cu deposits of the Cadia district are associated with Late-Ordovician monzonite intrusions, which were emplaced during the final phase of Macquarie Arc magmatism at the end of the Benambran Orogeny. N-striking faults, including the curviplanar, northerly striking, moderately west-dipping basement thrust faults of the Cadiangullong system, developed early in the district history. NE-striking faults formed during rifting in the late Silurian. Subsequent E-W directed Siluro- Devonian extension followed by regional E-W shortening during the Devonian Tabberabberan Orogeny dismembered these intrusions, thereby superposing different levels porphyry Au-Cu systems as well as the host stratigraphy. During the late Silurian, the partially exhumed porphyry systems were buried beneath the Waugoola Group sedimentary cover sequence, which is generally preserved in the footwall of the Cadiangullong thrust fault system. The Waugoola Group is a typical rift-sag sequence, deposited initially in local fault-bounded basins which then transitioned to a gradually shallowing marine environment as local topography was overwhelmed. Basin geometry was controlled by pre-existing basement structures, which were subsequently inverted during the Devonian Tabberabberan Orogeny, offsetting the unconformity by up to 300m vertically. In the Waugoola Group cover, this shortening was accommodated via a complex network of minor detachments that strike parallel to major underlying basement faults. For this reason, faults and folds measured at the surface in the sedimentary cover can be used as a predictive tool to infer basement structures at depth. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Page generated in 0.0459 seconds