1 |
Approximation of Antenna Patterns With Gaussian Beams in Wave Propagation Models.Sherkat, Navid January 2011 (has links)
The topic of antenna pattern synthesis, in the context of beam shaping, is considered. One approach to this problem is to use the method of point matching. This method can be used to approximate antenna patterns with a set of uniformly spaced sources with suitable directivities. One specifies a desired antenna pattern and approximates it with a combination of beams. This approach results in a linear system of equations that can be solved for a set of beam coefficients. With suitable shifts between the matching points and between the source points, a good agreement between the assumed and the reproduced antenna patterns can be obtained along an observation line. This antenna modelling could be used in the program NERO to compute the field at the receiver antenna for a realistic 2D communication link. It is verified that the final result is not affected by the details of the antenna modelling.
|
2 |
Implementation of a 3D terrain-dependent Wave Propagation Model in WRAPBlakaj, Valon, Gashi, Gent January 2014 (has links)
The radio wave propagation prediction is one of the key elements for designing an efficient radio network system. WRAP International has developed a software for spectrum management and radio network planning.This software includes some wave propagation models which are used to predict path loss. Current propagation models in WRAP perform the calculation in a vertical 2D plane, the plane between the transmitter and the receiver. The goal of this thesis is to investigate and implement a 3D wave propagation model, in a way that reflections and diffractions from the sides are taken into account.The implemented 3D wave propagation model should be both fast and accurate. A full 3D model which uses high resolution geographical data may be accurate, but it is inefficient in terms of memory usage and computational time. Based on the fact that in urban areas the strongest path between the receiver and the transmitter exists with no joint between vertical and horizontal diffractions [10], the radio wave propagation can be divided into two parts, the vertical and horizontal part. Calculations along the horizontal and vertical parts are performed independently, and after that, the results are combined. This approach leads to less computational complexity, faster calculation time, less memory usage, and still maintaining a good accuracy.The proposed model is implemented in C++ and speeded up using parallel programming techniques. Using the provided Stockholm high resolution geographical data, simulations are performed and results are compared with real measurements and other wave propagation models. In addition to the path loss calculation, the proposed model can also be used to estimate the channel power delay profile and the delay spread.
|
Page generated in 0.1025 seconds