• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 20
  • 12
  • 10
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 169
  • 169
  • 161
  • 126
  • 60
  • 47
  • 32
  • 29
  • 28
  • 27
  • 24
  • 22
  • 21
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Performance comparison of two dynamic shared-path protection algorithms for WDM optical mesh networks

Sharma, Ameeth 26 January 2009 (has links)
Finding an optimal solution to the problem of fast and efficient provisioning of reliable connections and failure recovery in future intelligent optical networks is an ongoing challenge. In this dissertation, we investigate and compare the performance of an adapted shared-path protection algorithm with a more conventional approach; both designed for survivable optical Wavelength Division Multiplexing (WDM) mesh networks. The effect of different classes of service on performance is also investigated. Dedicated path protection is a proactive scheme which reserves spare resources to combat single link failures. Conventional Shared-path Protection (CSP) is desirable due to the efficient utilization of resources which results from the sharing of backup paths. Availability is an important performance assessment factor which measures the probability that a connection is in an operational state at some point in time. It is the instantaneous counterpart of reliability. Therefore, connections that do not meet their availability requirements are considered to be unreliable. Reliability Aware Shared-path Protection (RASP) adopts the advantages of CSP by provisioning reliable connections efficiently, but provides protection for unreliable connections only. With the use of a link disjoint parameter, RASP also permits the routing of partial link disjoint backup paths. A simulation study, which evaluates four performance parameters, is undertaken using a South African mesh network. The parameters that are investigated are: 1. Blocking Probability (BP), which considers the percentage of connection requests that are blocked, 2. Backup Success Ratio (BSR), which considers the number of connections that are successfully provisioned with a backup protection path, 3. Backup Primary Resource Ratio (BPR), which considers the ratio of resources utilized to cater for working traffic to the resources reserved for protection paths and lastly 4. Reliability Satisfaction Ratio (RSR), which evaluates the ratio of provisioned connections that meet their availability requirements to the total number of provisioned connections. Under dynamic traffic conditions with varying network load, simulation results show that RASP can provision reliable connections and satisfy Service Level Agreement (SLA) requirements. A competitive Blocking Probability (BP) and lower Backup Primary Resource Ratio (BPR) signify an improvement in resource utilization efficiency. A higher Backup Success Ratio (BSR) was also achieved under high Quality of Service (QoS) constraints. The significance of different availability requirements is evaluated by creating three categories, high availability, medium availability and low availability. These three categories represent three classes of service, with availability used as the QoS parameter. Within each class, the performance of RASP and CSP is observed and analyzed, using the parameters described above. Results show that both the BP and BPR increase with an increase in the availability requirements. The RSR decreases as the reliability requirements increase and a variation in BSR is also indicated. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
132

Algorithms For Routing, Wavelength Assignment And Topology Design In Optical Networks

Krishnaswamy, Rajesh M 11 1900 (has links) (PDF)
No description available.
133

Deploying Monitoring Trails for Fault Localization in All-optical Networks and Radio-over-Fiber Passive Optical Networks

Maamoun, Khaled M. January 2012 (has links)
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman’s Problem (CPP) solution and an adapted version of the Traveling Salesman’s Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
134

DWDM v přístupových sítích / DWDM in access networks

Šifta, Radim January 2011 (has links)
The aim of this master´s thesis is an explanation of the problem of optical access networks with wavelength division multiplex, main purpose is to demonstrate the difference between simulation and real measurement. The thesis is divided into several basic thematic areas. At the beginning of thesis is outlined the basic division of multiplexing system, there are discussed the basic solutions of wavelength multiplexes and their possible combinations. The next chapter deals with the active elements, which are an essential part of xWDM systems such as optical lasers, detectors and amplifiers. The following chapter is focused on the passive elements, especially on the passive filters, which form a key part of the wavelength multiplex. Methods of measurement C/DWDM networks are discussed in the next part of thesis. The next chapter describes the topology used by active and passive optical networks. Penultimate part of this thesis consists of designs simulated models PON and WDM-PON networks and comparing their transmission parameters. The final part presents the results of practical measurements of experimental optical access network with wavelength division multiplex, the results are simultaneously compared with results of simulations.
135

Povrchové plasmony v optických mikrostrukturách a jejich senzorové aplikace / Surface plasmons in optical microstructures and their sensor applications

Adam, Pavel January 2013 (has links)
Title: Surface plasmons in optical microstructures and their sensor applications Author: Pavel Adam Institute: Institute of Photonics and Electronics AS CR, v.v.i., Department of Optical Sensors Supervisor of the doctoral thesis: doc. Ing. Jiří Homola, CSc., DSc. Abstract: This work is focused on the study of surface plasmon resonance (SPR) sensor platforms based on wavelength division multiplexing (WDM) of multiple surface plasmons (SPs). These sensors are based on advanced diffraction gratings supporting either conventional or Bragg-scattered SPs, which are simultaneously excited at different wavelengths. These SPs are studied both analytically and numerically using rigorous coupled-wave analysis and an integral approach. WDM of two and three SPs is presented and followed by the method for the analysis of the resolution, noise and cross-sensitivity. This method is employed to analyze the ability of different SPR sensor platforms (supporting WDM of two SPs) to discriminate refractive index (RI) changes in a thin layer at the sensor surface from background RI changes. The WDM SPR sensors based on advanced diffraction gratings prepared by interferometric holography are developed and tested in a model biosensing experiment consisting of the layer-by-layer growth of protein multilayers. The linear WDM of two...
136

Reliability versus Cost in Next Generation Optical Access Networks

Mahloo, Mozhgan January 2013 (has links)
The ever increasing demands of Internet users caused by the introduction of new high bandwidth applications and online services as well as the growing number of users and devices connected to the Internet, bring many challenges for the operators, especially in the last mile section of the network. Next generation access architectures are expected to offer high sustainable bandwidth per user. They also need to support a much larger service areas to decrease number of current central offices and hence potentially save the network expenditures in the future. Obviously, it requires high capacity and low loss transmission and optical fiber technology is the only future proof candidates for broadband access. Although this technology has already been widely deployed in the core networks, it is hard to use the same expensive devices made for core segment to solve the last mile bottlenecks, due to the low number of users sharing the network resources (and deployment cost). Therefore, the next generation optical access (NGOA) networks need to be designed with consideration of cost efficiency in the first place.   Network reliability is also turning to be an important aspect for the NGOA networks as a consequence of long reach, high client count and new services requiring uninterrupted access. Consequently, new architectures not only need to be cost efficient but also they should fulfill the increasing reliability requirements.   Although several NGOA alternatives have been proposed in the literatures, there is not yet an agreement on a single architecture. As described earlier, network expenditure and reliability performance are the two main factors to be considered. Therefore, this thesis concentrates on finding a suitable alternative for future broadband access by evaluating the reliability performance and total cost of ownership for several NGOA candidates. In particular, in this thesis we analyze the tradeoff between the cost needed to deploy backup resources and the reliability performance improvement obtained by the provided survivability mechanism.   First, we identified the suitable NGOA candidates by comparing two main groups of optical access networks, namely passive optical networks (PONs) and active optical networks (AONs), in terms of cost, reliability performance and power consumption. The initial results have shown that wavelength division multiplexing PON (WDM PON) is the most promising alternative for the NGOA networks because of its high potential capacity, low cost and power consumption. So we continued our studies by investigating two WDM-based PON architectures regarding their cost and reliability performance. The study has also included a proposed fiber layout compatible with these two candidates aiming to minimize the required investment needed to offer protection. Our primary results confirmed that hybrid PON (HPON) is the best alternative for the NGOA networks. Therefore we further analyzed this candidate considering several variants of HPON. The most important components and sections of the HPON, which need to be protected to decrease the impact of each failure in the network have been identified. Based on these outcomes, two resilience architectures protecting the shared part of the HPON were proposed and their reliability performance parameters as well as cost of protection were evaluated. According to the results, using our proposed protection schemes a considerable improvement in reliability performance of the HPON variants can be provided at minor extra investment. We also introduced a cost efficient HPON architecture with different levels of protection for users with various reliability requirements, i.e. the protection of shared parts of the access network for all the connected users and end-to-end resilience scheme for some selected ones (e.g., business users). To gain an overall view on the cost efficiency of the proposed architecture, we evaluated the investment required for deploying these schemes considering several network upgrading paths towards a protected network. Moreover, a sensitivity analysis investigating the influence of network deployments time and the density of the users with higher availability requirements was presented.   In summary, we have shown that HPON is able to fulfill the main NGOA requirements such as high bandwidth per-user, large coverage and client count. The work carried out in the thesis has proved that HPON can also offer high reliability performance while keeping the network expenditures at an acceptable level. Moreover, low power consumption and high flexibility in resource allocation of this architecture, makes it a winning candidate for the NGOA networks. Therefore, HPON is a promising architecture to be deployed as NGOA network in the near future considering the fact that components are soon to be available in the market. / <p>QC 20130530</p> / FP7 EU project, Optical Access Seamless Evolution(OASE)
137

Resource Allocation Schemes And Performance Evaluation Models For Wavelength Division Multiplexed Optical Networks

El Houmaidi, Mounire 01 January 2005 (has links)
Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in network infrastructure and next-generation Internet architectures. WDM networks have the potential to provide unprecedented bandwidth, reduce processing cost, achieve protocol transparency, and enable efficient failure handling. This dissertation addresses the important issues of improving the performance and enhancing the reliability of WDM networks as well as modeling and evaluating the performance of these networks. Optical wavelength conversion is one of the emerging WDM enabling technologies that can significantly improve bandwidth utilization in optical networks. A new approach for the sparse placement of full wavelength converters based on the concept of the k-Dominating Set (k-DS) of a graph is presented. The k-DS approach is also extended to the case of limited conversion capability using three scalable and cost-effective switch designs: flexible node-sharing, strict node-sharing and static mapping. Compared to full search algorithms previously proposed in the literature, the K-DS approach has better blocking performance, has better time complexity and avoids the local minimum problem. The performance benefit of the K-DS approach is demonstrated by extensive simulation. Fiber delay line (FDL) is another emerging WDM technology that can be used to obtain limited optical buffering capability. A placement algorithm, k-WDS, for the sparse placement of FDLs at a set of selected nodes in Optical Burst Switching (OBS) networks is proposed. The algorithm can handle both uniform and non-uniform traffic patterns. Extensive performance tests have shown that k-WDS provides more efficient placement of optical fiber delay lines than the well-known approach of placing the resources at nodes with the highest experienced burst loss. Performance results that compare the benefit of using FDLs versus using optical wavelength converters (OWCs) are presented. A new algorithm, A-WDS, for the placement of an arbitrary numbers of FDLs and OWCs is introduced and is evaluated under different non-uniform traffic loads. This dissertation also introduces a new cost-effective optical switch design using FDL and a QoS-enhanced JET (just enough time) protocol suitable for optical burst switched WDM networks. The enhanced JET protocol allows classes of traffic to benefit from FDLs and OWCs while minimizing the end-to-end delay for high priority bursts. Performance evaluation models of WDM networks represent an important research area that has received increased attention. A new analytical model that captures link dependencies in all-optical WDM networks under uniform traffic is presented. The model enables the estimation of connection blocking probabilities more accurately than previously possible. The basic formula of the dependency between two links in this model reflects their degree of adjacency, the degree of connectivity of the nodes composing them and their carried traffic. The usefulness of the model is illustrated by applying it to the sparse wavelength converters placement problem in WDM networks. A lightpath containing converters is divided into smaller sub-paths such that each sub-path is a wavelength continuous path and the nodes shared between these sub-paths are full wavelength conversion capable. The blocking probability of the entire path is obtained by computing the blocking probabilities of the individual sub-paths. The analytical-based sparse placement algorithm is validated by comparing it with its simulation-based counterpart using a number of network topologies. Rapid recovery from failure and high levels of reliability are extremely important in WDM networks. A new Fault Tolerant Path Protection scheme, FTPP, for WDM mesh networks based on the alarming state of network nodes and links is introduced. The results of extensive simulation tests show that FTPP outperforms known path protection schemes in terms of loss of service ratio and network throughput. The simulation tests used a wide range of values for the load intensity, the failure arrival rate and the failure holding time. The FTPP scheme is next extended to the differentiated services model and its connection blocking performance is evaluated. Finally, a QoS-enhanced FTPP (QEFTPP) routing and path protection scheme in WDM networks is presented. QEFTPP uses preemption to minimize the connection blocking percentage for high priority traffic. Extensive simulation results have shown that QEFTPP achieves a clear QoS differentiation among the traffic classes and provides a good overall network performance.
138

DPSK modulation format for optical communication using FBG demodulator / DPSK modulering för optisk kommunikation med demodulering av FBG

Jacobsson, Fredrik January 2004 (has links)
<p>The task of the project was to evaluate a differential phase shift keying demodulation technique by replacing a Mach-Zehnder interferometer receiver with an optical filter (Fiber Bragg Grating). Computer simulations were made with single optical transmission, multi channel systems and transmission with combined angle/intensity modulated optical signals. The simulations showed good results at both 10 and 40 Gbit/s. Laboratory experiments were made at 10 Gbit/s to verify the simulation results. It was found that the demodulation technique worked, but not with satisfactory experimental results. The work was performed at Eindhoven University of Technology, Holland, within the framework of the STOLAS project at the department of Electro-optical communication.</p>
139

QoS Aware Quorumcasting Over Optical Burst Switched Networks

Balagangadhar, B G 07 1900 (has links)
Recently there is an emergence of many Internet applications such as multimedia, video conferencing, distributed interactive simulations (DIS), and high-performance scientific computations like Grid computing. These applications require huge amount of bandwidth and a viable communication paradigm to coordinate with multiple sources and destinations. Optical networks are the potential candidates for providing high bandwidth requirement. Existing communication paradigms include broadcast, and multicast. Hence supporting these paradigms over optical networks is necessary. Multicasting over optical networks has been well investigated in the literature. QoS policies implemented in IP does not apply for Wavelength division multiplexed (WDM) or optical burst switched (OBS) networks, as the optical counterpart for store-and-forward model does not exist. Hence there is a need to provision QoS over optical networks. These QoS requirements can include contention, optical signal quality, reliability and delay. To support these diverse requirements, optical networks must be able to manage the available resources effectively. Destinations participating in the multicast session are fixed (or rather static). Due to the random contention in the network, if at least one or more destination(s) is not reachable, requested multicast session cannot be established. This results in loss of multicast request with high probability of blocking. Incorporating wavelength converters (WCs) at the core nodes can decrease the contention loss, however WCs require optical-electrical-optical (O/E/O) conversion. This increases the delay incurred by optical signal. On the other hand all-optical WCs are expensive and increase the cost of the network if deployed. Goal of this thesis is, to provide hop-to-hop QoS on an existing all-optical network (AON) with no WC and optical regeneration capability. In order to minimize the request vi Abstract vii lost due to contention in AON, we propose a variation of multicasting called Quorumcasting or Manycasting. In Quorumcasting destinations can join (or leave) to (or from) the group depending on whether they are reachable or not. In other words destinations have to be determined rather than knowing them prior, as in the case of multicasting. Quorum pool is minimum number of destinations that are required to be participated in the session for successful accomplishment of the job (k be the size of quorum pool). Providing QoS for manycasting over OBS has not been addressed in the literature. Given the multicast group (with cardinality m > k) and the number of destinations required to be participated, the contribution of this work is based on providing necessary QoS. In this thesis we study the behavior of manycasting over OBS networks. In OBS networks, packets from the upper-layer (such as IP, ATM, STM) are assembled and a burst is created at the edge router. By using O/E/O conversion at the edge nodes, these optical bursts are scheduled to the core node. Control header packet or burst header packet (BHP) is sent to prior to the transmission of burst. The BHP configures the core nodes and the burst is scheduled on the channel after certain offset time. In the first part of the thesis, we explain the different distributed applications with primary focus on Grid over OBS (GoOBS). We study the loss scenario due contention and inadequate signal quality for an unicast case in OBS network. We further extend this to manycasting. We modify the BHP header fields to make the burst aware of not only contention on the next-hop link, but also bit-error rate (BER). By using recursive signal and noise power relations, we calculate the BER (or q-factor) of the link and schedule the burst only if the required BER threshold is met. Thus all the bursts that reach the next-hop node ensure that contention and BER constraint are met. This are called “Impairment-Aware (IA) Scheduling”. Burst loss in the network increases due to BER constraint. Hence we propose algorithms to decrease the burst loss and simultaneously providing the sufficient optical signal quality. We propose three algorithms called IA-shortest path tree (IA-SPT), IA-static over provisioning (IA-SOP), and IA-dynamic membership (IA-DM). In IA-SPT destination set is sorted in the non-decreasing order of the hop-distance from source. First k of them are selected and bursts are scheduled to Abstract viii these destinations along the shortest path. In IA-SOP we select additional k0(_ m − k) destinations where k0 is the over provisioning factor. Over provisioning ensures that burst at least reach k of them, decreasing the contention blocking. However as the burst has to span more destinations, the fan-out of the multicast capable switch will be more and the BER could be high. In IA-DM destinations are dynamically added or removed, depending on contention and BER. Destination is removed and new destination is added based on the two constraints. Our simulation results shows that IA-DM out performs the other two algorithms in terms of request blocking. We show that IP-based many casting has poor performance and hence there is a need for supporting many casting over OBS networks. We verify our simulation results with the proposed analytical method. In the next part, we focus on provisioning QoS in many casting. QoS parameters considered for analysis include, signal quality i.e., optical signal to noise ratio (OSNR), reliability of the link and, propagation delay. In this work we consider application based QoS provisioning. In other words, given the threshold requirements of an application, our aim is to successfully schedule the burst to the quorum pool satisfying the threshold conditions. We use a de-centralized way of the scheduling the burst, using BHP. With the help of local-network state information, the burst is scheduled only if it satisfies multiple set of constraints. Corresponding reception of burst at the node ensures that all the QoS constraints are met and burst is forwarded to the next hop. QoS attributes are either multiplicative or additive. Noise factor of the optical signal and reliability factor are multiplicative constraints, where as propagation delay is additive. We define a path information vector, which provides the QoS information of the burst at every node. Using lattice theory we define an ordering, such that noise factor and propagation delay are minimum and reliability is maximum. Using path algebra we compute the overall QoS attributes. Due to multiple set of constraints, the request blocking could be high. We propose algorithms to minimize request blocking for Multiple Constrained Many cast Problem (MCMP). We propose two algorithms MCM-SPT and MCM-DM. We consider different set of service thresholds, such as real time and data service thresholds. Real time services impose restriction on signal quality and the propagation delay. On the other hand Abstract ix data services require high reliability and signal quality. Our simulation study shows that MCM-SPT performs better than MCM-DM for real-time services and the data services can be provisioned using MCM-DM.
140

DPSK modulation format for optical communication using FBG demodulator / DPSK modulering för optisk kommunikation med demodulering av FBG

Jacobsson, Fredrik January 2004 (has links)
The task of the project was to evaluate a differential phase shift keying demodulation technique by replacing a Mach-Zehnder interferometer receiver with an optical filter (Fiber Bragg Grating). Computer simulations were made with single optical transmission, multi channel systems and transmission with combined angle/intensity modulated optical signals. The simulations showed good results at both 10 and 40 Gbit/s. Laboratory experiments were made at 10 Gbit/s to verify the simulation results. It was found that the demodulation technique worked, but not with satisfactory experimental results. The work was performed at Eindhoven University of Technology, Holland, within the framework of the STOLAS project at the department of Electro-optical communication.

Page generated in 0.0812 seconds