1 |
Analyse des états de surface en science des matériaux : caractérisation multi-échelles par ondelette et détermination de l'anisotropie des surfaces / Analysis of surface states in materials science : multi-scale wavelet characterization and determination of the anisotropy of the surfacesKhawaja, Zahra 21 January 2014 (has links)
Le contrôle et à la maîtrise de l’état des surfaces est un besoin majeur pour les industriels. De nombreuses études sur les interactions entre la morphologie de surface et les mécanismes physiques, chimiques ou mécaniques, ont été réalisées. Cependant une caractérisation plus précise en fonction des domaines et des besoins est nécessaire. Elle consiste à chercher les paramètres de rugosité les plus pertinents qui relient la topographie d’une surface aux phénomènes physiques qu’elle subit ou aux propriétés du matériau dont elle composé.Dans ce travail, un logiciel pour caractériser l’état de surface a été développé. Cet outil nommé « MesRug » permet de calculer des paramètres de rugosité et d’extraire les plus pertinents ainsi que de définir l’échelle la plus adéquate pour une application donnée. La recherche des paramètres les plus pertinent se fait par une approche statistique (l'analyse de la variance ‘ANOVA’ combinée avec la théorie du Bootstrap).Une caractérisation a été effectuée en utilisant des données de mesures (2D) sur des surfaces abrasives. L’influence de la forme des ondelettes discrètes et continues sur la détection de l’échelle pertinente du mécanisme d’abrasion a été testée. On déduit que la décomposition en ondelettes permet de quantifier et de localiser les échelles de l'abrasion des processus d'usinage pour tous les paramètres du processus. Cependant, la pertinence de caractériser les échelles appropriées d'abrasion ne dépend pas de la forme de l'ondelette.Dans ce travail, un nouveau paramètre de rugosité 3D est proposé pour quantifier la régularité d'une surface indépendamment de l'amplitude et des unités de longueur de balayage. L'efficacité de ce paramètre est testée sur des surfaces périodiques bruitées avec différents degrés d'anisotropie. La valeur de ce paramètre est comprise entre zéro (bruit parfait) et 100% (surface sinusoïdale parfaite). Il nous a permis de détecter les directions d'anisotropie de régularité pour une surface donnée. / Monitoring and control of the state of the surfaces is a major need for industry. Numerous studies on the interactions between the surface morphology and the physical, chemical or mechanical mechanisms have been conducted. However, a more precise characterization related to industrial domains and needs is necessary. It consists in finding the most relevant roughness parameters that connect the topography of a surface with the physical phenomena which it undergoes or in the properties of the material of which it consisted.In this work, a software designed to characterize the surface condition was developed. This tool named "MesRug" allows to calculate roughness parameters then extract the most relevant ones and to define the most appropriate scale for a given application. The search for the most relevant parameters is done by a statistical approach (analysis of variance ANOVA combined with the theory of Bootstrap).A characterization was performed using (2D) data of measurement on abrasive surfaces. The influence of the form of discrete and continuous wavelet on the detection on the relevant scale mechanism of the abrasion was tested. We conclude that the wavelet decomposition allows to quantify and localize the scales of abrasion of the machining process for all process parameters. However, the relevance of appropriate scales to characterize abrasion does not depend on the shape of the wavelet.In this work, a new 3D roughness parameter is proposed to quantify the smoothness of a surface, independently of the amplitude and the scanning length units of the surface. The efficiency of this parameter is tested on noisy periodic surfaces with varying degrees of anisotropy. The value of this parameter is between zero (perfect sound) and 100 % (sine perfect surface). It enables us to identify the anisotropy directions of regularity for a given surface.
|
Page generated in 0.1181 seconds