Spelling suggestions: "subject:"way channel"" "subject:"wave channel""
1 |
Chaotic mixing in wavy-type channels and two-layer shallow flowsLee, Wei-Koon January 2011 (has links)
This thesis examines chaotic mixing in wavy-type channels and two-layer shallow water flow. For wavy-type channels, the equations of motion for vortices and fluid particles are derived assuming two-dimensional irrotational, incompressible flow. Instantaneous positions of the vortices and particles are determined using Lagrangian tracking, and are conformally mapped to the physical domain. Unsteady vortex motion is analysed, and vortex-induced chaotic mixing in the channels studied. The dynamics of mixing associated with the evolution of the separation bubble, and the invariant manifolds are examined. Mixing efficiencies of the different channel configurations are compared statistically. Fractal enhancement of productivity is identified in the study of auto-catalytic reaction in the wavy channel. For the two-layer shallow water model, an entropy-correction free Roe type two-layer shallow water solver is developed for a hyperbolic system with non-conservative products and source terms. The scheme is well balanced and satisfies the C-property such that smooth steady solutions are second order accurate. Numerical treatment of the wet-dry front of both layers and the loss of hyperbolicity are incorporated. The solver is tested rigorously on a number of 1D and 2D benchmark test cases. For 2D implementation, a dynamically adaptive quadtree grid generation system is adopted, giving results which are in excellent agreement with those on regular grids at a much lower cost. It is also shown that algebraic balancing cannot be applied directly to a two-layer shallow water flow due to the lack of simultaneous referencing for the still water position for both layers. The adaptive two-layer shallow water solver is applied successfully to flow in an idealised tidal channel and to tidal-driven flow in Tampa Bay, Florida. Finally, chaotic advection and particle mixing is studied for wind-induced recirculation in two-layer shallow water basins, as well as Tampa Bay, Florida.
|
2 |
3D NANOTUBE FIELD EFFECT TRANSISTORS FOR HYBRID HIGH-PERFORMANCE AND LOW-POWER OPERATION WITH HIGH CHIP-AREA EFFICIENCYFahad, Hossain M. 03 1900 (has links)
Information anytime and anywhere has ushered in a new technological age where massive amounts of ‘big data’ combined with self-aware and ubiquitous interactive computing systems is shaping our daily lives. As society gravitates towards a smart living environment and a sustainable future, the demand for faster and more computationally efficient electronics will continue to rise. Keeping up with this demand requires extensive innovation at the transistor level, which is at the core of all electronics. Up until recently, classical silicon transistor technology has traditionally been weary of disruptive innovation. But with the aggressive scaling trend, there has been two dramatic changes to the transistor landscape. The first was the re-introduction of metal/high-K gate stacks with strain engineering in the 45 nm technology node, which enabled further scaling on silicon to smaller nodes by alleviating the problem of gate leakage and improving the channel mobility. The second innovation was the use of non-planar 3D silicon fins as opposed to classical planar architectures for stronger electrostatic control leading to significantly lower off-state leakage and other short-channel effects. Both these innovations have prolonged the life of silicon based electronics by at least another 1-2 decades. The next generation 14 nm technology node will utilize silicon fin channels that have gate lengths of 14 nm and fin thicknesses of 7 nm. These dimensions are almost at the extreme end of current lithographic capabilities. Moreover, as fins become smaller, the parasitic capacitances and resistances increase significantly resulting in degraded performance. It is of popular consensus that the next evolutionary step in transistor technology is in the form of gate-all-around silicon nanowires (GAA NWFETs), which offer the tightest electrostatic configuration leading to the lowest possible leakage and short channel characteristics in over-the-barrier type devices. However, to keep scaling on silicon, the amount of current generated per device has to be increased while keeping short channel effects and off-state leakage at bay.
The objective of this doctoral thesis is the investigation of an innovative vertical silicon based architecture called the silicon nanotube field effect transistor (Si NTFET). This topology incorporates a dual inner/outer core/shell gate stack strategy to control the volume inversion properties in a hollow silicon 1D quasi-nanotube under a tight electrostatic configuration. Together with vertically aligned source and drain, the Si NTFET is capable of very high on-state performance (drive current) in an area-efficient configuration as opposed to arrays of gate-all-around nanowires, while maintaining leakage characteristics similar to a single nanowire. Such a device architecture offsets the need of device arraying that is needed with fin and nanowire architectures. Extensive simulations are used to validate the potential benefits of Si NTFETs over GAA NWFETs on a variety of platforms such as conventional MOSFETs, tunnel FETs, junction-less FETs. This thesis demonstrates a novel CMOS compatible process flow to fabricate vertical nanotube transistors that offer a variety of advantages such as lithography-independent gate length definition, integration of epitaxially grown silicon nanotubes with spacer based gate dielectrics and abrupt in-situ doped source/drain junctions. Experimental measurement data will showcase the various materials and processing challenges in fabricating these devices. Finally, an extension of this work to topologically transformed wavy channel FinFETs is also demonstrated keeping in line with the theme of area efficient high-performance electronics.
|
3 |
Investigation of Fouling in Wavy-Fin Exhaust Gas RecirculatorsKrishnamurthy, Nagendra 21 May 2010 (has links)
This dissertation presents a detailed account of the study undertaken on the subject of fouling of Exhaust Gas Recirculator (EGR) coolers. The fouling process in EGR coolers is identified to be due to two primary reasons — deposition of fine soot particles and condensation of hydrocarbons known as dry soot and wet soot fouling, respectively. Several numerical simulations are performed to study the fouling process. Preliminary analysis of the particle forces for representative conditions reveal that drag, thermophoresis and Brownian forces are the significant transport mechanisms and among them, the deposition process is dominated by thermophoresis. Soot deposition in a representative turbulent plain channel shows a direct relationship of the amount of deposition with the near-wall temperature gradient. Subsequently, periodic and developing flow simulations are performed on a wavy channel geometry, a common EGR design for various Reynolds numbers and thermal boundary conditions. Constant heat flux boundary condition is used in the periodic fully-developed calculations, which assist in establishing various deposition trends. The wavy nature of the walls is noted to affect the fouling process, resulting in specific deposition patterns. For the lower Reynolds number flows, significantly higher deposition is observed due to the higher particle residence times. On the other hand, the developing flow calculations facilitate the use of wall temperature distributions that typically exist in EGR coolers. The linear dependence of the amount of deposition on the near-wall temperature gradient or in other words, the heat flux, is ascertained. It is also observed in all the calculations, that for the sub-micron soot particles considered, the deposition process is almost independent of the particle size. In addition, the nature of the flow and heat transfer characteristics and the transition to turbulence in a developing wavy channel are studied in considerable detail. Finally, a study on the condensation of heavy hydrocarbons is undertaken as a post-processing step, which facilitates the prediction of the spatial distribution and time-growth of the combined fouling layer. From the calculations, the maximum thickness of the dry soot layer is observed to be near the entrance, whereas for the wet soot layer, the peak is found to be towards the exit of the EGR cooler. Further, parametric studies are carried out to investigate the effect of various physical properties and inlet conditions on the process of fouling. / Master of Science
|
4 |
Etude de l’influence de la géométrie des canaux sur les performances d’un réacteur/échangeur / Study of the channels’ geometry impact on the performances of a heat reactor/exchangerAnxionnaz, Zoé 28 October 2009 (has links)
Le couplage de la réaction et de l’échange thermique au sein du même appareil est intéressant lors de la mise en oeuvre de synthèses exothermiques. L’appareil étudié est un échangeur/réacteur fonctionnant en continu dont la structure est basée sur celle des échangeurs de chaleur à plaques. Le passage du batch au continu n’est pas sans difficultés et une des manières d’intensifier les transferts tout en conservant un temps de séjour suffisant (régime laminaire) est de structurer, en 2D, le chemin réactionnel. Les caractérisations expérimentales et numériques de différentes géométries de canaux ondulés ont permis de comprendre les mécanismes qui influencent les performances thermohydrauliques et le comportement des écoulements. Des corrélations reliant les critères de performance au nombre de Dean ont été établies et la démarche d’optimisation d’une géométrie en fonction des contraintes d’utilisation a pu être définie. Les premiers pas vers l’extrapolation font l’objet de la dernière partie de ces travaux et présentent un enjeu important pour le développement industriel de ces technologies. Les résultats de cette étude ont souligné l’intérêt d’un paramètre adimensionnel caractéristique : le nombre de Dean interne, qui permet de conserver les performances thermo-hydrauliques et donc de prédire leur évolution lors du processus de changement de taille. / Coupling reaction and heat transfer in the same unit is an interesting way to perform exothermic reactions. The studied apparatus is a continuous heat exchanger/reactor. Its structure is based on plate heat exchangers’ one. The main difficulty when transposing batch reactions to continuous ones is to intensify the heat and mass transfers and maintain at the same time enough residence time (laminar regime). A way to remove this barrier is to structure in two dimensions the chemical path in order to obtain a wavy channel. The experimental and numerical characterizations of several wavy geometries allowed us to understand the mechanisms’ impact on the thermo-hydraulic performances and on the flow behaviour. The performances criteria have been correlated to the Dean number and the optimisation of the geometry has been made according to industrial specifications. Finally, the scale-up procedure has been studied. Our results showed that the conservation of a characteristic number: the internal Dean number allows the prediction of the performances and of the flow behaviour when the characteristic size of the wavy channel increases.
|
Page generated in 0.0762 seconds