• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Orthogonal decompositions of the space of algebraic numbers modulo torsion

Fili, Paul Arthur 20 October 2010 (has links)
We introduce decompositions determined by Galois field and degree of the space of algebraic numbers modulo torsion and the space of algebraic points on an elliptic curve over a number field. These decompositions are orthogonal with respect to the natural inner product associated to the L² Weil height recently introduced by Allcock and Vaaler in the case of algebraic numbers and the inner product naturally associated to the Néron-Tate canonical height on an elliptic curve. Using these decompositions, we then introduce vector space norms associated to the Mahler measure. For algebraic numbers, we formulate L[superscript p] Lehmer conjectures involving lower bounds on these norms and prove that these new conjectures are equivalent to their classical counterparts, specifically, the classical Lehmer conjecture in the p=1 case and the Schinzel-Zassenhaus conjecture in the p=[infinity] case. / text
2

Norms extremal with respect to the Mahler measure and a generalization of Dirichlet's unit theorem

Miner, Zachary Layne 06 July 2011 (has links)
In this thesis, we introduce and study several norms constructed to satisfy an extremal property with respect to the Mahler measure. These norms naturally generalize the metric Mahler measure introduced by Dubickas and Smyth. We show that bounding these norms on a certain subspace implies Lehmer's conjecture and in at least one case that the converse is true as well. We evaluate these norms on a class of algebraic numbers that include Pisot and Salem numbers, and for surds. We prove that the infimum in the construction is achieved in a certain finite dimensional space for all algebraic numbers in one case, and for surds in general, a finiteness result analogous to that of Samuels and Jankauskas for the t-metric Mahler measures. Next, we generalize Dirichlet's S-unit theorem from the usual group of S-units of a number field K to the infinite rank group of all algebraic numbers having nontrivial valuations only on places lying over S. Specifically, we demonstrate that the group of algebraic S-units modulo torsion is a Q-vector space which, when normed by the Weil height, spans a hyperplane determined by the product formula, and that the elements of this vector space which are linearly independent over Q retain their linear independence over R. / text
3

Growth rate of height functions associated with ample divisors and its applications / 豊富な因子に付随する高さ関数の増大度とその応用

Sano, Kaoru 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21532号 / 理博第4439号 / 新制||理||1638(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 伊藤 哲史, 教授 雪江 明彦, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM

Page generated in 0.0544 seconds