• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Swarm Behavior in Two Dimensions

Ryan, Louis 31 May 2012 (has links)
We investigate the steady state solutions that can exist for a two dimensional swarm of biological organisms, which have pairwise social interaction forces. The three steady states we investigate using a continuum model are a ribbon migrating swarm, a circular migrating swarm, and a milling swarm. We solve these numerically by reformulating the integral equation that arises from the continuum model as an energy minimization problem. For the ribbon migrating solution, we are able to determine an analytic solution from Carleman's equation which arises after an asymptotic expansion of the social interaction potential. Using this technique we are able to show the existence of a square root singularity that emerges at the boundary of the compactly supported swarm. The analytic solution agrees with the numerical solution for certain parameter values in the social interaction potential. We then demonstrate the existence of solutions for a migrating and milling circular swarm which contain a square root singularity. The milling swarm looks similar to the infinite ribbon, so we are able to use an asymptotic expansion of the potential to obtain an analytic solution in this case as well. The singularities in the density of the swarm suggest that the Morse potential should not be used for modeling biological swarming.
2

Analytic and Numerical Studies of a Simple Model of Attractive-Repulsive Swarms

Ronan, Andrew S. 01 May 2011 (has links)
We study the equilibrium solutions of an integrodifferential equation used to model one-dimensional biological swarms. We assume that the motion of the swarm is governed by pairwise interactions, or a convolution in the continuous setting, and derive a continuous model from conservation laws. The steady-state solution found for the model is compactly supported and is shown to be an attractive equilibrium solution via linear perturbation theory. Numerical simulations support that the steady-state solution is attractive for all initial swarm distributions. Some initial results for the model in higher dimensions are also presented.

Page generated in 0.2163 seconds