• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dune Erosion and Beach Profile Evolution in Response to Bichromatic Wave Groups

Berard, Neville Anne 01 April 2014 (has links)
On sandy coastlines dunes provide a barrier of protection from strong environmental forces that can naturally occur during storm events including storm surges that expose the dunes to large waves. A set of laboratory experiments were used to investigate the morphological processes during the erosion of a steep dune face under bichromatic wave conditions for two different mean water level elevations, corresponding to storm surges and waves that collide with or overwash the dune. In the collision regime, episodic slumping due to the undercutting of the dune resulted in sudden erosional events followed by long periods of wave-driven reshaping at the dune toe. In the overwash regime, dune erosion was faster and occurred at a more consistent rate. Small scale bedforms (ripples) measured during the overwash test evolved in height faster and to greater overall heights than collision test while bedform lengths were not affected by the change in water level. A numerical model, XBeach, was calibrated to examine the ability to predict erosion of the steep dune due to waves in the two water level regimes. XBeach was not able to recreate the spatial variability of the significant wave height profile from the laboratory measurements; however, mean velocities were in good agreement with observations suggesting that bed shear stress is well estimated. During mobile bed simulations of erosion in the two regimes, the model was in agreement with measured dune erosion after initial adjustment. XBeach was very sensitive to several parameters that control the rate of erosion including the critical avalanching slope under water, the threshold water depth and the sediment transport formulation. The model did not perform well at predicting erosion rates until these parameters had been modified. Overall, XBeach performed better when simulating dune erosion in the overwash regime than the collision regime. / Thesis (Master, Civil Engineering) -- Queen's University, 2014-04-01 14:54:35.257
2

Dinâmica sedimentar e resiliência às marés meteorológicas em ambientes costeiros da baixada santista: abordagem numérica / Storm surge resilience and sedimentar dynamic in Santos\'s coastal environment: numerical approach

Conte, Tito 14 October 2016 (has links)
Dentre os ambientes costeiros, os estuários são as principais fontes de sedimento para os oceanos. Sua dinâmica sensível é amplamente suscetível a modificações de origem natural e antrópica impactando no balanço sedimentar destes ambientes. O presente trabalho busca compreender a importância da maré meteorológica causada por frentes frias sobre os processos sedimentares do complexo estuarino de Santos aplicando o modelo numérico XBeach com três cenários. O primeiro foi forçado apenas pela maré astronômica outro representando uma condição de frente fria média e um terceiro representando uma frente fria extrema. Buscou-se detectar as frentes utilizando dados de reanálise do NCEP/NCAR. Foram extraídos os cinco dias mais intensos das frentes escolhidas e aplicaram-se ao inicio da série de dados de input do modelo para os ensaios numéricos. Os resultados permitiram compreender que os sistemas frontais atuam como agentes essenciais no balanço sedimentar tendo um papel erosivo compensando os processos deposicionais atuantes no período sem frentes. Frentes muito intensas agravam as feições erosivas e deposicionais, desbalanceando o sistema além da sua capacidade de recuperação. / Among the coastal environments, the estuaries are the main sediment source for oceans. Its sensible dynamic is widely susceptible to changes of natural and anthropogenic impacts the sediment balance of those environments. This work applies the Xbeach numerical model in Santos estuary to understand the storm surges forced by cold fronts on the sediment transport through three scenarios. The first scenario input was astronomic tide sea surface high, the second scenario input was the median cold front and the last scenario input was an extreme cold front. To get the cold front condition we use the NCEP/NCAR reanalysis data. We applied the five most intense days from each cold front condition in the beginning astronomic tide series. With the numerical model results we could understand the erosive action from the cold fronts and how it compensates the depositional period without any cold fronts. The extreme cold fronts intensify the depositional/erosion process unbalancing the system beyond the resilience capacity.
3

Dinâmica sedimentar e resiliência às marés meteorológicas em ambientes costeiros da baixada santista: abordagem numérica / Storm surge resilience and sedimentar dynamic in Santos\'s coastal environment: numerical approach

Tito Conte 14 October 2016 (has links)
Dentre os ambientes costeiros, os estuários são as principais fontes de sedimento para os oceanos. Sua dinâmica sensível é amplamente suscetível a modificações de origem natural e antrópica impactando no balanço sedimentar destes ambientes. O presente trabalho busca compreender a importância da maré meteorológica causada por frentes frias sobre os processos sedimentares do complexo estuarino de Santos aplicando o modelo numérico XBeach com três cenários. O primeiro foi forçado apenas pela maré astronômica outro representando uma condição de frente fria média e um terceiro representando uma frente fria extrema. Buscou-se detectar as frentes utilizando dados de reanálise do NCEP/NCAR. Foram extraídos os cinco dias mais intensos das frentes escolhidas e aplicaram-se ao inicio da série de dados de input do modelo para os ensaios numéricos. Os resultados permitiram compreender que os sistemas frontais atuam como agentes essenciais no balanço sedimentar tendo um papel erosivo compensando os processos deposicionais atuantes no período sem frentes. Frentes muito intensas agravam as feições erosivas e deposicionais, desbalanceando o sistema além da sua capacidade de recuperação. / Among the coastal environments, the estuaries are the main sediment source for oceans. Its sensible dynamic is widely susceptible to changes of natural and anthropogenic impacts the sediment balance of those environments. This work applies the Xbeach numerical model in Santos estuary to understand the storm surges forced by cold fronts on the sediment transport through three scenarios. The first scenario input was astronomic tide sea surface high, the second scenario input was the median cold front and the last scenario input was an extreme cold front. To get the cold front condition we use the NCEP/NCAR reanalysis data. We applied the five most intense days from each cold front condition in the beginning astronomic tide series. With the numerical model results we could understand the erosive action from the cold fronts and how it compensates the depositional period without any cold fronts. The extreme cold fronts intensify the depositional/erosion process unbalancing the system beyond the resilience capacity.
4

Hydrodynamic Controls on the Morphodynamic Evolution of Subaqueous Landforms

Nelson, Timothy L 20 December 2017 (has links)
The southern Chandeleur Islands are an ideal setting to study shoal evolution given their history of submergence and re-emergence. Here, numerical models shed light on the attendant processes contributing to shoal recovery/reemergence following a destructive storm event. Simulations of a synthetic winter storm along a cross-shore profile using Xbeach shows that convergence of wave-induced sediment transport associated with repeated passage of cold-fronts initiates aggradation, but does not lead to reemergence. A Delft3d model of the entire island chain shows that as these landforms aggrade alongshore processes driven by incident wave refraction on the shoal platform, backbarrier circulation and resulting transport become increasingly important for continued aggradation and eventual emergence. Aggradation magnitudes are a function of depth ranging from 2 – 10 mm per event (onset to recovery to near mean sea level). In the absence of big storms, this modest aggradation can be more than one meter in a few years.
5

Modelling coarse-grained beach profile evolution

Jamal, Mohamad Hidayat January 2011 (has links)
Coarse-grained beaches are particularly prevalent in the UK, composed of accumulations of either gravel, or mixed sand and gravel sediments. The aim of the work presented in this thesis is to improve capabilities for predicting coarse-grained beach 2D profile development. In particular, the effects of infiltration and sediment sorting are considered. In this study, the public domain numerical model, XBeach (v12) is developed further. This model was initially developed for studying sandy environments especially for the case of dune erosion. Here, the model is modified to enhance its capability to predict beach profile change on coarse-grained beaches. Improvements include: use of Lagrangian interpretation of velocity in place of Eulerian for driving sediment movement; introduction of a new morphological module based upon Soulsby’s sediment transport equation for waves and currents; incorporation of Packwood’s infiltration approach in the unsaturated area of the swash region; and implementation of a multiple sediment fraction algorithm for sediment sorting of mixed sediments. These changes are suggested and justified in order to significantly improve the application of this model to gravel and mixed beaches, especially with regard to swash velocity asymmetry which is responsible for development of the steep accretionary phase steep berm above waterline and sediment sorting. A comparison between model simulation and large scale experiments is presented with particular regard to the tendency for onshore transport and profile steepening during calm conditions; offshore transport and profile flattening during storm conditions; and sediment sorting in the swash zone. Data used for this and the model calibration comes from the Large Wave Channel (GWK) of the Coastal Research Centre (FZK) in Hannover, Germany. The results are found to agree well with the measured experimental data on gravel beach profile evolution. This is due to the inclusion of infiltration in the model which weakens the backwash volume and velocity in a more satisfying manner than through the use of asymmetric swash friction and transport coefficient. The model also simulates sediment sorting of a mixed sediment beach. However, the profile comparisons were not satisfactory due to limitations of the numerical model such as the constant permeability rate used throughout the simulation and the non-conservation of the sediment volume in the laboratory data by an order of 50%. From the simulation, it was found that the fine sediment moves offshore and the coarser sediment moves onshore. This is because of infiltration weakens the backwash velocity; the coarser sediment moving onshore barely moves back offshore while the fine sediment remains in motion. This pattern agrees with the pattern obtained from sediment samples analysis in the experiment and provides an explanation for the existence of composite beaches. The model is also shown to be capable of switching from accretionary to erosive conditions as the wave conditions become more storm-like. Again, the model simulations were in a good agreement with the observations from the GWK dataset. Numerical model simulations on the effects of the tidal cycle on coarse-grained beach profile evolution were also carried out. This preliminary investigation showed that the model was able to predict the anticipated profile change associated with a coarse-grained beach under such wave and tidal forcing. Tidally forced accretion and erosion were compared with those predicted under similar beach sediments and wave conditions for constant water level. The main differences are that the affected area is wider and the berm is located on the upper beach during flood for both gravel and mixed beaches. Therefore, the model developed in this study can be seen to be a robust tool with which to investigate cross-shore beach profile change on coarse-grained beaches and sediment sorting on mixed beaches. Further work is also indicated.
6

Beach morphodynamics in the lee of a wave farm : synergies with coastal defence

Abanades Tercero, Javier January 2017 (has links)
Wave energy has a great potential in many coastal areas thanks to a number of advantages: the abundant resource, the highest energy density of all renewables, the greater availability factors than e.g. wind or solar energy; and the low environmental and particularly visual impact. In addition, a novel advantage will be investigated in this work: the possibility of a synergetic use for carbon-free energy production and coastal protection. In this context, wave energy can contribute not only to decarbonising the energy supply and reducing greenhouse emissions, but also to mitigating coastal erosion. In effect, wave farms will be deployed nearshore to generate electricity from wave energy, and therefore the leeward coast will be exposed to a milder wave climate, which can potentially mitigate coastal erosion. This thesis aims to determine the effectiveness of wave farms for combating coastal erosion by means of a suite of state-of-the-art process-based numerical models that are applied in several case studies (Perranporth Beach,UK; and Xago Beach, Spain) and at different time scales (from the short-term to the long-term). A wave propagation model, SWAN, is used to establish the effects of the wave farm on the wave conditions. The outcomes of SWAN will be coupled to XBeach, a costal processes model that is applied to analyse the effects of the milder wave conditions on the coast. In addition to these models, empirical classifications and analytical solutions are used as well to characterise the alteration of the beach morphology due to the presence of a wave farm. The analysis of the wave farm impacts on the wave conditions and the beach morphology will be carried out through a set of ad hoc impact indicators. Parameters such as the reduction in the significant wave height, the performance of the wave farm, the effects on the seabed level and the erosion in the beach face area are defined to characterise these impacts. Moreover, the role played by the key design parameters of wave farms, e.g. farm-to-coast distance or layout, is also examined. The results from this analysis demonstrate that wave farms, in addition to their main purpose of generating carbon-free energy, are capable of reducing erosion at the coast. Storm-induced erosion is significantly reduced due to the presence of wave farms in the areas most at risk from this phenomenon. However, the effects of wave farms on the coast do not lend themselves to general statements, for they will depend on the wave farm design (WEC type, layout and farm-to-coast distance) and the characteristics of the area in question, as shown in this document for Perranporth and Xago. In summary, this synergy will improve the economic viability of wave farm projects through savings in conventional coastal defence measures, thereby fostering the development of this nascent renewable, reducing greenhouse gas emission and converging towards a more sustainable energy model. Thus, wave energy contributes to mitigating climate change by two means, one acting on the cause, the other on the effect: (i) by bringing down carbon emissions (cause) through its production of renewable energy, and (ii) by reducing coastal erosion (effect).

Page generated in 0.0459 seconds