• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metabolic, cardiac and ventilatory regulation in early larvae of the South African clawed frog, Xenopus laevis.

Pan, Tien-Chien 12 1900 (has links)
Early development of O2 chemoreception and hypoxic responses under normoxic (150 mmHg) and chronically hypoxic (110 mmHg) conditions were investigated in Xenopus laevis from hatching to 3 weeks post fertilization. Development, growth, O2 consumption, ventilatory and cardiac performance, and branchial neuroepithelial cells (NEC) density and size were determined. At 3 days post fertilization (dpf), larvae started gill ventilation at a rate of 28 ± 4 beats/min and showed increased frequency to 60 ± 2 beats/min at a PO2 of 30 mmHg. Also at 3 dpf, NECs were identified in the gill filament buds using immunohistochemical methods. Lung ventilation began at 5 dpf and exhibited a 3-fold increase in frequency from normoxia to a PO2 of 30 mmHg. Hypoxic tachycardia developed at 5 dpf, causing an increase of 20 beats/min in heart rate, which led to a 2-fold increase in mass-specific cardiac output at a PO2 of 70 mmHg. At 10 dpf, gill ventilatory sensitivity to hypoxia increased, which was associated with the increase in NEC density, from 15 ± 1 to 29 ± 2 cells/mm of filament at 5 and 10 dpf, respectively. Unlike the elevated rate, cardiac and ventilatory volumes were independent of acute hypoxia. Despite increased cardioventilatory frequency, larvae experienced an average of 80% depression in during acute hypoxia. Chronic hypoxia (PO2 of 110 mmHg) decreased mass-specific cardiac performance before 10 dpf. In older larvae (10 to 21 dpf), chronic hypoxia decreased acute branchial and pulmonary hypoxic hyperventilation and increased NEC size. Collectively, these data suggest that larvae exhibit strong O2-driven acute hypoxic responses post-hatching, yet are still O2 conformers. All acute hypoxic responses developed before 5 dpf, and then the effects of chronic hypoxia started to show between 7 and 21 dpf. Thus, the early formation of acute hypoxic responses is susceptible to the environment and can be shaped by the ambient PO2.
2

Muscarinic actions in Xenopus laevis tadpole swimming

Porter, Nicola J. January 2013 (has links)
Muscarinic acetylcholine receptors (mAChRs) mediate effects of acetylcholine (ACh) in many systems, including those involved in locomotion. In the stage 37/38 Xenopus laevis tadpole, a well-understood model system of vertebrate locomotion, mAChRs have been found to be located on motor neurons with evidence suggesting that mAChRs are involved in swimming behaviour. The current study aimed to further investigate the role of mAChR-mediated cholinergic transmission by employing extracellular and whole-cell patch clamp recordings to examine the effects of mAChR activation on the properties of different types of neurons in the Xenopus laevis tadpole swimming circuit. It was found that mAChR activation can increase the threshold for initiating swimming by skin stimulation and can lead to the generation of spontaneous motor output in the absence of physical stimuli. These effects were found to be a result of direct inhibition of dorsolateral sensory interneurons of the mechanosensory pathway, direct inhibition of glycinergic inhibitory interneurons in the CPG and a decrease in CPG neuron firing reliability during swimming. The data presented here comprise the first whole-cell patch-clamp investigation into mAChR-mediated cholinergic transmission in the Xenopus laevis tadpole swimming circuit and provide novel evidence that mAChRs modulate the properties of mechanosensory pathway and CPG neurons in this model system of vertebrate locomotion.

Page generated in 0.0498 seconds