Spelling suggestions: "subject:"miyazaki"" "subject:"okazaki""
1 |
Métodos de otimização para definição de arquiteturas e pesos de redes neurais MLPLINS, Amanda Pimentel e Silva January 2005 (has links)
Made available in DSpace on 2014-06-12T16:01:05Z (GMT). No. of bitstreams: 2
arquivo7154_1.pdf: 1370997 bytes, checksum: 1580b7b5979343826e4d0a3b88b57dac (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2005 / Esta dissertação propõe modificações na metodologia yamazaki para a otimização simultânea de arquiteturas e pesos de redes Multilayer Perceptron (MLP). O objetivo principal é propô-las em conjunto com as respectivas validações, visando tornar mais eficiente o processo de otimização. A base para o algoritmo híbrido de otimização são os algoritmos simulated annealing, tabu search e a metodologia yamazaki.
As modificações são realizadas nos critérios de implementação tais como mecanismo de geração de vizinhança, esquema de esfriamento e função de custo. Um dos pontos principais desta dissertação é a criação de um novo mecanismo de geração de vizinhança visando aumentar o espaço de busca. O esquema de esfriamento é de grande importância na convergência do algoritmo. O custo de cada solução é medido como média ponderada entre o erro de classificação para o conjunto de treinamento e a porcentagem de conexões utilizadas pela rede.
As bases de dados utilizadas nos experimentos são: classificação de odores provenientes de três safras de um mesmo vinho e classificação de gases. A fundamentação estatística para as conclusões observadas através dos resultados obtidos é realizada usando teste de hipóteses.
Foi realizado um estudo do tempo de execução separando as fases de otimização global da fase de refinamento local. Concluiu-se que com o novo mecanismo de geração de vizinhança fez desnecessário o uso do backpropagation obtendo assim um alto ganho em tempo de execução. O algoritmo híbrido de otimização apresentou, para ambas as bases de dados, o menor valor da média do erro de classificação do conjunto de teste e o menor valor da quantidade de conexões. Além disso, o tempo de execução foi reduzido em média 46.72%
|
Page generated in 0.0437 seconds