• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solvent-free hierarchization of zeolites by carbochlorination

Nichterwitz, Martin, Grätz, Sven, Nickel, Winfried, Borchardt, Lars 17 July 2017 (has links) (PDF)
Carbochlorination, a solvent-free top-down process, is a novel pathway for the hierarchization of zeolites. In contrast to other methods no further washing steps are required. The employed method should serve as a model system for the “upcycling” of coked and deactivated zeolites accumulated by the industry. In order to establish a basic understanding of the process, zeolite H-Y was taken as a model system and a thorough investigation of important reaction parameters, like chlorination temperature, time and concentration, carbon loading, and Si/Al ratio, was performed. Under optimized conditions, we have been able to hierarchize H-Y with high yield, doubling the mesopore volume while maintaining the crystallinity and surface area.
2

Solvent-free hierarchization of zeolites by carbochlorination

Nichterwitz, Martin, Grätz, Sven, Nickel, Winfried, Borchardt, Lars 17 July 2017 (has links)
Carbochlorination, a solvent-free top-down process, is a novel pathway for the hierarchization of zeolites. In contrast to other methods no further washing steps are required. The employed method should serve as a model system for the “upcycling” of coked and deactivated zeolites accumulated by the industry. In order to establish a basic understanding of the process, zeolite H-Y was taken as a model system and a thorough investigation of important reaction parameters, like chlorination temperature, time and concentration, carbon loading, and Si/Al ratio, was performed. Under optimized conditions, we have been able to hierarchize H-Y with high yield, doubling the mesopore volume while maintaining the crystallinity and surface area.

Page generated in 0.0551 seconds