• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 99
  • 29
  • 29
  • 21
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 7
  • 6
  • 5
  • 4
  • Tagged with
  • 576
  • 111
  • 87
  • 86
  • 83
  • 69
  • 57
  • 54
  • 46
  • 38
  • 37
  • 36
  • 34
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Movement of new nitrogen through oceanic food webs: a stable isotope approach

Landrum, Jason Paul 06 April 2009 (has links)
Nitrogen (N) generally limits primary production across large areas of the world's oceans. Allochthonous inputs of N (i.e., "new" N) via N2-fixing organisms (diazotrophs) are crucial for sustaining primary production and are often associated with net export of organic matter (OM) from surface waters. Diazotroph N (ND) contribution plays an integral role in supporting oceanic food webs and regulating the flux of OM into and through the oceans (e.g., the biological pump). Stable isotope techniques were used to trace the input and movement of new N through oceanic food webs. Laboratory experiments were performed to determine elemental and isotopic shifts of OM exposed to microbial and metazoan processing. δ15N of OM was typically higher when exposed to microbial communities, with no difference in δ15N of OM between experiments incubated at different temperatures (4°C and 25°C). In separate experiments, shrimp digestion did not alter the δ15N of OM through digestion, but the δ15N of macerated OM was enriched in 15N. Both of these experiments provide insight into the mechanisms driving variations in the δ15N of OM in the world's oceans. To assess the role of diazotrophs in oceanic food webs, we used the distribution of δ15N to quantify the relative ND contribution to suspended particle N (PN) and mesozooplankton N biomass (NZOOP) in the subtropical North Atlantic (STNA). Qualitatively, ND contribution was often high for both PN and NZOOP, with the highest contributions occurring in the mixed layer. Our results also indicate higher ND contribution to both PN and NZOOP in the western portion of the basin than in the east. ND contribution to larger mesozooplankton at depth further suggests that migrating mesozooplankton transport ND out of the mixed layer. Quantitatively, ND trophic transfer efficiency was lower than bulk N trophic transfer efficiency, suggesting low assimilation of ND by mesozooplankton. Overall, we estimated a ND pool turnover time on the order of weeks for our region of study. These findings demonstrate that ND is laterally and vertically variable in the STNA, and that the ND pool is sensitive to perturbations on short timescales. We discuss the global implications of our findings and their implications for the N cycle and elemental fluxes through oligotrophic oceans.
232

Characterizing ballast water as a vector for nonindigenous zooplankton transport

Humphrey, Donald B. 11 1900 (has links)
The global movement of aquatic non-indigenous species can have severe ecological, environmental and economic impacts emphasizing the need to identify potential invaders and transport pathways. Initial transport is arguably the most important stage of the invasion process owing to its role in selectively determining potential invasion candidates. This study characterizes a well defined human-mediated dispersal mechanism, ballast water transport, as a vector for the introduction of non-indigenous zooplankton. Ballast water exchange in the open ocean is the most widely adopted practice for reducing the threat of aquatic invasions and is mandatory for most foreign vessels intending to release ballast in Canadian waters. Ships entering Canadian ports are categorized into the following three shipping classes based on current regulations: overseas vessels carrying exchanged ballast water, intra-coastal vessels carrying exchanged ballast water or intra-coastal vessels carrying un-exchanged ballast water. This study characterizes zooplankton communities associated with each of these shipping classes sampled from ports on Canada’s Pacific coast, Atlantic coast and the Great Lakes Basin. Ballast water samples were collected and analyzed from 77 vessels between 2006 - 2007. The ballast water environment was found to be diverse, with over 193 zooplankton taxa, 71 of which were non-indigenous to their receiving environments. Intracoastal vessels containing un-exchanged coastal water transported the greatest density of non-indigenous zooplankton into Canadian ports. Total zooplankton density was found to be negatively correlated with ballast water age The absence of mandatory ballast water exchange and the younger ballast water age of coastal un-exchanged vessels is likely responsible for the higher density of non-indigenous zooplankton in intracoastal un-exchanged vessels. Propagule pressure, invasion history and environmental suitability are all useful in evaluating invasion potential and all suggest that intracoastal un-exchanged vessels pose the greatest invasion threat to Canadian aquatic ecosystems. In conclusion, although the risk of primary introductions from overseas ports may have been reduced through open-ocean exchange of ballast water, secondary introductions from previously invaded ports in North America may be the primary threat to Canadian aquatic ecosystems via this transport vector.
233

A study of the interaction between the physical and ecological processes of three aquatic ecosystems /

Bruce, Louise Christina. January 2005 (has links)
Thesis (Ph.D.)--University of Western Australia, 2007.
234

Macrozooplankton and micronekton in the Arabian Sea oxygen minimum zone /

Rapien, Mary. January 2004 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2004. / Typescript. Includes bibliographical references (v. 2, leaves 467-485).
235

Effects of small-scale turbulence on microzooplankton predator-prey interactions /

Ptak, Marcianna, January 1998 (has links)
Thesis (M. Sc.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 77-83.
236

Ecology of phytoplankton, Acartia tonsa, and microzooplankton in Apalachicola Bay, Florida

Putland, Jennifer Nancy. Iverson, Richard. January 2005 (has links)
Thesis (Ph. D.)--Florida State University, 2005. / Advisor: Richard Iverson, Florida State University, College of Arts and Sciences, Dept. of Oceanography. Title and description from dissertation home page (viewed Jan. 27, 2006). Document formatted into pages; contains xiii, 140 pages. Includes bibliographical references.
237

Multidisciplinary oceanographic studies of a small island in the Southern California Bight

Caldeira, Rui Miguel Andrade, January 2002 (has links)
Thesis (Ph. D.)--University of California, Los Angeles, 2002. / Vita. Includes bibliographical references.
238

Effekte von 17a-Ethinylestradiol und Trenbolon auf das Zooplankton aquatischer Modellökosysteme

Jaser, Wolfgang. Unknown Date (has links)
Techn. Universiẗat, Diss., 2004--München. / Erscheinungsjahr an der Haupttitelstelle: 2003.
239

Microzooplankton herbivory and bacterivory in the North Water Polynya /

Bussey, Heather Jane, January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2003. / Includes bibliographical references. Also available online.
240

Calcium concentrations of freshwater crustacean zooplankton species : inter-species differences and tests for impacts of declining aqueous calcium levels /

Jeziorski, Adam. January 2005 (has links)
Thesis (M.Sc.)--York University, 2005. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 70-75). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url%5Fver=Z39.88-2004&res%5Fdat=xri:pqdiss &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR11819

Page generated in 0.0362 seconds