Return to search

Orthology-Based Multilevel Modeling of Differentially Expressed Mouse and Human Gene Pairs

There is great interest in finding human genes expressed through pharmaceutical intervention, thus opening a genomic window into benefit and side-effect profiles of a drug. Human insight gained from FDA-required animal experiments has historically been limited, but in the case of gene expression measurements, proposed biological orthologies between mouse and human genes provide a foothold for animal-to-human extrapolation. We have investigated a five-component, multilevel, bivariate normal mixture model that incorporates mouse, as well as human, gene expression data. The goal is two-fold: to increase human differential gene-finding power; and to find a subclass of gene pairs for which there is a direct exploitable relationship between animal and human genes. In simulation studies, the dual-species model boasted impressive gains in differential gene-finding power over a related marginal model using only human data. Bias in parameter estimation was problematic, however, and occasionally led to failures in control of the false discovery rate. Though it was considerably more difficult to find species-extrapolative gene-pairs (than differentially expressed human genes), simulation experiments deemed it to be possible, especially when traditional FDR controls are relaxed and under hypothetical parameter configurations.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-08132008-130441
Date21 August 2008
CreatorsOgorek, Benjamin Alexander
ContributorsDr. David Dickey, Dr. Jason Osborne, Mr. Alan Menius, Dr. Jackie Hughes-Oliver, Dr. Leonard Stefanski
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-08132008-130441/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dis sertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds