<p>This thesis research is motivated by a special type of missing data - Gap Data, which was first encountered in a cardiology study conducted at Duke Medical School. This type of data include multiple observations of certain event time (in this medical study the event is the reopenning of a certain artery), some of them may have one or more missing periods called ``gaps'' before observing the``first'' event. Therefore, for those observations, the observed first event may not be the true first event because the true first event might have happened in one of the missing gaps. Due to this kind of missing information, estimating the survival function of the true first event becomes very difficult. No research nor discussion has been done on this type of data by now. In this thesis, the auther introduces a new nonparametric estimating method to solve this problem. This new method is currently called Imputed Empirical Estimating (IEE) method. According to the simulation studies, the IEE method provide a very good estimate of the survival function of the true first event. It significantly outperforms all the existing estimating approaches in our simulation studies. Besides the new IEE method, this thesis also explores the Maximum Likelihood Estimate in thegap data case. The gap data is introduced as a special type of interval censored data for thefirst time. The dependence between the censoring interval (in the gap data case is the observedfirst event time point) and the event (in the gap data case is the true first event) makes the gap data different from the well studied regular interval censored data. This thesis points of theonly difference between the gap data and the regular interval censored data, and provides a MLEof the gap data under certain assumptions.The third estimating method discussed in this thesis is the Weighted Estimating Equation (WEE)method. The WEE estimate is a very popular nonparametric approach currently used in many survivalanalysis studies. In this thesis the consistency and asymptotic properties of the WEE estimateused in the gap data are discussed. Finally, in the gap data case, the WEE estimate is showed to be equivalent to the Kaplan-Meier estimate. Numerical examples are provied in this thesis toillustrate the algorithm of the IEE and the MLE approaches. The auther also provides an IEE estimate of the survival function based on the real-life data from Duke Medical School. A series of simulation studies are conducted to assess the goodness-of-fit of the new IEE estimate. Plots and tables of the results of the simulation studies are presentedin the second chapter of this thesis.<P>
Identifer | oai:union.ndltd.org:NCSU/oai:NCSU:etd-20001110-173900 |
Date | 13 November 2000 |
Creators | Yang, Liqiang |
Contributors | Dr. Jye-Chyi Lu, Dr. Cavell Brownie, Dr. Jacqueline Hughes-Oliver, Dr. Thomas Johnson |
Publisher | NCSU |
Source Sets | North Carolina State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://www.lib.ncsu.edu/theses/available/etd-20001110-173900 |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0019 seconds