This thesis is dedicated to the study and comprehension of biological networks at the molecular level. The objectives were to analyse their topology, integrate it in a genotype-phenotype analysis, develop richer mathematical descriptions for
them, study their community structure and compare different methodologies for estimating their internal fluxes.
The work presented in this document moves around three main axes. The first one is the biological. Which organisms were studied in this thesis? They range from the simplest biological agents, the viruses, in this case the Potyvirus genus to prokariotes such as Escherichia coli and complex eukariotes (Arabidopsis thaliana, Nicotiana benthamiana). The second axis refers to which biological networks were studied. Those are protein-protein interaction (PPIN) and metabolic networks (MN). The final axis relates to the mathematical and modelling tools used to generate knowledge from those networks. These tools can be classify in three main branches: graph theory, constraint-based modelling and multivariate statistics.
The document is structured in six parts. The first part states the justification for the thesis, exposes a general thesis roadmap and enumerates its main contributions. In the second part important literature is reviewed, summarized and integrated. From the birth and development of Systems Biology to one of its most popular branches: biological network analysis. Particular focus is put on PPIN and MN and their structure, representations and features. Finally a general overview of the mathematical tools used is presented. The third, fourth and fifth parts represent the central work of this thesis. They deal respectively with genotypephenotype interaction and classical network analysis, constraint-based modelling methods comparison and modelling metabolic networks and community structure. Finally, in the sixth part the main conclusions of the thesis are summarized and enumerated.
This thesis highlights the vital importance of studying biological entities as systems and how powerful and promising this integrated analysis is. Particularly, network analysis becomes a fundamental avenue of research to gain insight into those biological systems and to extract, integrate and display this new information. It generates knowledge from just data. / Esta tesis está dedicada al estudio y comprensión de redes biológicas a nivel molecular. Los objetivos fueron analizar su topología, integrar esta en un análisis de genotipo-fenotipo, desarrollar descripciones matemáticas más completas para ellas, estudiar su estructura de comunidades y comparar diferentes metodologías para estimar sus flujos internos.
El trabajo presentado en este documento gira entorno a tres ejes principales. El primero es el biológico. ¿Qué organismos han sido estudiados en esta tesis? Estos van desde los agentes biológicos mas simples, los virus, en este caso el género Potyvirus, hasta procariotas como Escherichia coli y eucariotas complejos (Arabidopsis thaliana, Nicotiana benthamiana). El segundo eje hace referencia a las redes biológicas estudiadas, que fueron redes de interacción de proteínas (PPIN) y redes metabólicas (MN). El eje final es el de las herramientas matemáticas y de modelización empleadas para interrogar esas redes. Estas herramientas pueden clasificarse en tres grandes grupos: teoría de grafos, modelización basada en restricciones y estadística multivariante.
Este documento está estructurado en seis partes. La primera expone la justificación para la tesis, muestra un mapa visual de la misma y enumera sus contribuciones principales. En la segunda parte, la bibliografía relevante es revisada y resumida. Desde el nacimiento y desarrollo de la Biología de Sistemas hasta una de sus ramas más populares: el análisis de redes biomoleculares. Especial interés es puesto en PPIN y MN: su estructura, representación y características. Finalmente, un resumen general de las herramientas matemáticas usadas es presentado. Los capítulos tercero, cuarto y quinto representan el cuerpo central de esta tesis. Estos tratan respectivamente sobre la interacción de genotipo-fenotipo y análisis topolólogico clásico de redes, modelos basados en restricciones y modelización de redes metabólicas y su estructura de comunidades. Finalmente, en la sexta parte las principales conclusiones de la tesis son resumidas y expuestas.
Esta tesis pone énfasis en la vital importancia de estudiar los fenómenos biológicos como sistemas y en la potencia y prometedor futuro de este análisis integrativo. En concreto el análisis de redes supone un camino de investigación fundamental para obtener conocimiento sobre estos sistemas biológicos y para extraer y mostrar información sobre los mismos. Este análisis genera conocimiento partiendo únicamente desde datos. / Aquesta tesi està dedicada a l'estudi i comprensió de xarxes biològiques a nivell molecular. Els objectius van ser analitzar la seva topologia, integrar aquesta en una anàlisi de genotip-fenotip, desenvolupar descripcions matemàtiques més completes per a elles, estudiar la seva estructura de comunitats o modularitat i comparar diferents metodologies per estimar els fluxos interns.
El treball presentat en aquest document gira entorn de tres eixos principals. El primer és el biològic. ¿Què organismes han estat estudiats en aquesta tesi? Aquests van des dels agents biològics mes simples, els virus, en aquest cas el gènere Potyvirus, fins procariotes com Escherichia coli i eucariotes complexos (Arabidopsis thaliana, Nicotiana benthamiana). El segon eix fa referència a les xarxes biològiques estudiades, que van ser les xarxes d'interacció de proteïnes (PPIN) i les xarxes metabòliques (MN). L'eix final és el de les eines matemàtiques i de modelització emprades per interrogar aquestes xarxes. Aquestes eines poden classificarse en tres grans grups: teoria de grafs, modelització basada en restriccions i estadística multivariant.
Aquest document està estructurat en sis parts. La primera exposa la justificació per a la tesi, mostra un mapa visual de la mateixa i enumera les seves contribucions principals. A la segona part, la bibliografia rellevant és revisada i resumida. Des del naixement i desenvolupament de la Biologia de Sistemes fins a una de les seves branques més populars: l'anàlisi de xarxes moleculars. Especial interès és posat en PPIN i MN: la seva estructura, representació i característiques. Finalment, un resum general de les eines matemàtiques utilitzades és presentat. Els capítols tercer, quart i cinquè representen el cos central d'aquesta tesi. Aquests tracten respectivament sobre la interacció de genotip-fenotip i anàlisi topolólogico clàssic de xarxes, models basats en restriccions i modelització de xarxes metabòliques i la seva estructura de comunitats. Finalment, en la sisena part les principals conclusions de la tesi són resumides i exposades.
Aquesta tesi posa èmfasi en la vital importància d'estudiar els fenòmens biològics com sistemes i en la potència i prometedor futur d'aquesta anàlisi integratiu. En concret l'anàlisi de xarxes suposa un camí d'investigació fonamental per obtenir coneixement sobre aquests sistemes biològics i per extreure i mostrar informació sobre els mateixos. Aquest anàlisi genera coneixement partint únicament des de dades. / Bosque Chacón, G. (2017). Network Analysis and Modeling in Systems Biology [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/79082
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/79082 |
Date | 27 March 2017 |
Creators | Bosque Chacón, Gabriel |
Contributors | Picó Marco, Jesús Andrés, Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds