Return to search

Computational studies, synthesis and characterization of ruthenium (ii) anticancer complexes

This thesis is centred on the application of Ru-based complexes as a promising alternative to cis-platin in cancer chemotherapy. Cis-platin is known to be the most prescribed chemotherapy which has more than 70% application in cancer cases especially the testicular cancer. An insight is provided in Chapter One and Two into the literatures reports on the application of Ru(II)-based complexes in cancer chemotherapy. In order to address some of the pressing challenges in rational design of Ru-based anticancer complexes, section 3.3 and 3.4 deal with efforts to elucidate the complication of their chemistry and instability while in section 3.5 efforts are made to find solution to the lack of proper knowledge of their targets using different theoretical approaches as presented in Chapter Three. In addition to the theoretical study, this thesis also comprises of the synthesis of the bis-pyrazole derivatives type of ligands and the derivatives of their Ru(II)-based complexes as provided in Chapter Four and Five respectively. Also the computational methods were used to elucidate the structural and spectroscopic properties of the synthesised ligands and their Ru(II)-based complexes. The geometrical and electronic properties are studied in relation to the stability and the reported anticancer activities of Ru(II)-based complexes in section 3.3. In subsection 3.3.1, several quantum properties including the natural energy decomposition analysis (NEDA) and quantum theory of atoms in a molecule (QTAIM) are computed on three models of RAPTA-C complexes using DFT with hybrid functional and basis set with ECP and without ECP. The higher stability of Carbo-RAPTA-C and Oxalo-RAPTA-C over RAPTA-C comes from the lower exchange repulsion and higher polarization contributions to their stability which gives insight into experimental observation. A similar study was carried out in subsection 3.3.2 on half-sandwich Ru(II)-based anticancer complexes with 6-toluene and 6-trifluorotoluene.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ufh/vital:11338
Date January 2014
CreatorsAdeniyi, Adebayo Azeez
PublisherUniversity of Fort Hare, Faculty of Science & Agriculture
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD (Chemistry)
Format466 leaves; 30 cm, pdf
RightsUniversity of Fort Hare

Page generated in 0.0146 seconds