Return to search

Information-Theoretic Secure Outsourced Computation in Distributed Systems

Secure multi-party computation (secure MPC) has been established as the de facto paradigm for protecting privacy in distributed computation. One of the earliest secure MPC primitives is the Shamir's secret sharing (SSS) scheme. SSS has many advantages over other popular secure MPC primitives like garbled circuits (GC) -- it provides information-theoretic security guarantee, requires no complex long-integer operations, and often leads to more efficient protocols. Nonetheless, SSS receives less attention in the signal processing community because SSS requires a larger number of honest participants, making it prone to collusion attacks. In this dissertation, I propose an agent-based computing framework using SSS to protect privacy in distributed signal processing. There are three main contributions to this dissertation. First, the proposed computing framework is shown to be significantly more efficient than GC. Second, a novel game-theoretical framework is proposed to analyze different types of collusion attacks. Third, using the proposed game-theoretical framework, specific mechanism designs are developed to deter collusion attacks in a fully distributed manner. Specifically, for a collusion attack with known detectors, I analyze it as games between secret owners and show that the attack can be effectively deterred by an explicit retaliation mechanism. For a general attack without detectors, I expand the scope of the game to include the computing agents and provide deterrence through deceptive collusion requests. The correctness and privacy of the protocols are proved under a covert adversarial model. Our experimental results demonstrate the efficiency of SSS-based protocols and the validity of our mechanism design.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ece_etds-1094
Date01 January 2016
CreatorsWang, Zhaohong
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Electrical and Computer Engineering

Page generated in 0.0017 seconds