<p>Cilj ove doktorske disertacije je postavljanje<br />matematičkog modela složenog trofaznog reakcionog<br />sistem za epoksidovanje sojinog ulja in situ formiranom<br />persirćetnom kiselinom iz sirćetne kiseline i vodonik<br />peroksida u prisustvu jonoizmenjivačke smole kao<br />katalizatora. Model uzima u obzir koncentracije<br />reaktanata i produkata u vodenoj i uljnoj fazi. Pored<br />osnovnih reakcija stvaranja persirćetne kiseline i<br />epoksida, model obuhvata i sporednu reakciju otvaranja<br />epoksi prstena sa sirćetnom kiselinom. Za modelovanje<br />reakcije formiranja persirćetne kiseline na površini<br />katalizatora primenjeni su Langmuir-Hinshelwood-<br />Hougen-Watson i Rideal-Eley postulati. Postavljeni<br />trofazni model predstavlja sistem običnih diferencijalnih<br />jednačina prvog reda koji opisuje promenu broja molova<br />komponenata i funkcionalnih grupa sa vremenom<br />izvođenja procesa epoksidovanja, i sadrži više parametara<br />razvrstanih na kinetičke, termodinamičke i parametre koji<br />se odnose na prenos mase. Parametri modela zavise od<br />uslova izvođenja epoksidovanja i to svi od temperature, a<br />neki i od sastava i inteziteta mešanja.<br />Za konstantu hemijske ravnoteže reakcije nastajanja<br />persirćetne kiseline je izvedena semiteorijska zavisnost<br />od temperature koja daje vrednosti istog reda veličine i<br />istog smera promene sa temperaturom kao i većina<br />podataka objavljenih u literaturi.<br />Za izračunavanje koeficijenta raspodele sirćetne kiseline<br />između uljne i vodene faze potrebno je odrediti zavisnost<br />konstante fazne ravnoteže tečno-tečno sirćetne kiseline od<br />sastava i temperature. Utvrđeno je da je UNIFAC model<br />grupnih doprinosa za koeficijente aktivnosti nepogodan<br />za predskazivanje ravnoteže tečno-tečno. Eksperimentalni<br />podaci za ovu konstantu ravnoteže su uspešno korelisani<br />UNIQUAC modelom za koeficijente aktivnosti.<br />Parametri reparametrizovane Arrheniusove zavisnosti<br />konstanti brzina reakcija i konstanti sorpcije učesnika<br />reakcije stvaranja persirćetne kiseline od temperature<br />određeni su simultano sa parametrima koji se odnose na<br />prenos mase i sa odnosom koeficijenata raspodele<br />persirćetne i sirćetne kiseline između uljne i vodene faze,<br />fitovanjem eksperimentalnih podataka epoksidovanja<br />sojinog ulja, tj. minimizacijom sume kvadrata odstupanja<br />računskih od eksperimentalno određenih vrednosti jodnog<br />broja i sadržaja epoksi kiseonika tokom epoksidovanja.<br />Fitovanje je uspešno izvedeno primenom metode<br />Marquardta, dok su pomenute računske vrednosti<br />dobijene numeričkom integracijom sistema<br />diferencijalnih jednačina modela primenom Runge-Kutta<br />metode IV reda.</p> / <p>The objective of this doctoral thesis was development of<br />mathematical model for complex three-phase reaction<br />system for soybean oil epoxidation with peracetic acid<br />formed in situ from acetic acid and hydrogen peroxide in a<br />presence of an ion exchange resin as catalyst. The local<br />concentrations of components in water and oil phases were<br />introduced into the model. In addition to reactions of the<br />peracetic acid and epoxy compound formation, model<br />considers the side reaction of epoxy ring cleavage with<br />acetic acid. Approximate modeling of peracetic acid<br />formation was based on Langmuir-Hinshelwood-Hougen-<br />Watson and Rideal-Eley postulates. Established threephase<br />model is a system of ordinary first order differential<br />equations which describes change of components and<br />functional groups amounts with reaction time. Besides<br />kinetic parameters, model comprises the thermodynamic<br />ones as well as parameters of mass transfer between the oil<br />and water phase. All model parameters are dependent on<br />temperature and some additionally on composition and<br />intensity of stirring.<br />A semitheoretical temperature dependency of chemical<br />equilibrium constant for peracetic acid formation was<br />established. The order of magnitude and temperature trend<br />of the calculated chemical equilibrium constant are in<br />agreement with the most data given in a literature.<br />For calculation of partition coefficient for acetic acid<br />between oil and water phase, temperature and composition<br />dependency of liquid-liquid equilibrium constant for acetic<br />acid is necessary. It was found that UNIFAC model of<br />group contribution was non-applicable for the prediction<br />of the equilibrium constant. The experimental data for the<br />equilibrium constant were, however, successfully fitted by<br />UNIQUAC model.<br />Temperature dependencies of the reaction rate constants<br />and sorption constants of reactants and products in<br />peracetic acid formation reaction are expressed by<br />reparameterized Arrhenius equation. The parameters of<br />such equation were determined simultaneously with mass<br />transfer parameters and ratio of peracetic acid and acetic<br />acid partition coefficients between oil and water phase by<br />fitting the experimental data i.e. by minimization of least<br />sum of squares of deviation between the calculated and<br />experimentally determined iodine value and epoxy oxygen<br />content . Marquardt method was successfully used to fit<br />the experimental data. A fourth-ordered Runge-Kutta<br />method was applied for integrating the system of<br />differential equations of the model.</p>
Identifer | oai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)83242 |
Date | 16 September 2013 |
Creators | Janković Milovan |
Contributors | Sinadinović-Fišer Snežana, Omorjan Radovan, Skala Dejan |
Publisher | Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, University of Novi Sad, Faculty of Technology at Novi Sad |
Source Sets | University of Novi Sad |
Language | Serbian |
Detected Language | English |
Type | PhD thesis |
Format | application/pdf |
Page generated in 0.0029 seconds