Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Concentrating solar power promises to be a potential solution for meeting the
worlds energy needs in the future. One of the key features of this type of renewable
energy technology is its ability to store energy effectively and relatively
cheaply. An air-rock bed thermal energy storage system promises to be an effective
and reasonably inexpensive storage system for concentrating solar power
plants. Currently there is no such storage system commercially in operation
in any concentrating solar power plant, and further research is required before
such a system can be implemented. The main research areas to address are
the thermal-mechanical behaviour of rocks, rock bed pressure drop correlations
and effective and practical system designs. Recent studies have shown that the
pressure drop over a packed bed of rocks is dependant on various aspects such
as particle orientation relative to the flow direction, particle shape and surface
roughness. The irregularity and unpredictability of the particle shapes make it
difficult to formulate a general pressure drop correlation. Typical air-rock bed
thermal design concepts consist of a large vertical square or cylindrical vessel in
which the bed is contained. Such system designs are simple but susceptible to
the ratcheting effect and large pressure drops. Several authors have proposed
concepts to over-come these issues, but there remains a need for tools to prove
the feasibility of the designs.
The purpose of this paper is to investigate aDEM-CFD coupled approach that
can aid the development of an air-rock bed thermal energy storage system. This
study specifically focuses on the use of CFD. A complementary study focusses
on DEM. The two areas of focus in this study are the pressure drop and system
design. A discrete CFD simulation model is used to predict pressure drop over packed beds containing spherical and irregular particles. DEM is used to create
randomly packed beds containing either spherical or irregularly shaped particles.
This model is also used to determine the heat transfer between the fluid
and particle surface. A porous CFD model is used to model system design concepts.
Pressure drop and heat transfer data predicted by the discrete model, is
used in the porous model to describe the pressure drop and thermal behaviour
of a TES system.
Results from the discrete CFD model shows that it can accurately predict the
pressure drop over a packed bed of spheres with an average deviation of roughly
10%fromresults found in literature. The heat transfer between the fluid and particle
surface also is accurately predicted, with an average deviation of between
13.36 % and 21.83 % from results found in literature. The discrete CFD model for
packed beds containing irregular particles presented problems when generating
a mesh for the CFD computational domain. The clump logic method was used
to represent rock particles in this study. This method was proven by other studies
to accurately model the rock particle and the rock packed bed structure using
DEM. However, this technique presented problems when generating the surface
mesh. As a result a simplified clump model was used to represent the rock particles.
This simplified clump model showed characteristics of a packed bed of
rocks in terms of pressure drop and heat transfer. However, the results suggest
that the particles failed to represent formdrag. This was attributed to absence of
blunt surfaces and sharp edges of the simplified clumpmodel normally found on
rock particles. The irregular particles presented in this study proved to be inadequate
for modelling universal characteristics of a packed bed of rocks in terms of
pressure drop. The porous CFD model was validated against experimental measurement
to predict the thermal behaviour of rock beds. The application of the
porous model demonstrated that it is a useful design tool for system design concepts. / AFRIKAANSE OPSOMMING: Gekonsentreerde sonkrag beloof om ’n potensiële toekomstige oplossing te
wees vir die wêreld se groeiende energie behoeftes. Een van die belangrikste eienskappe
van hierdie tipe hernubare energie tegnologie is die vermoë om energie
doeltreffend en relatief goedkoop te stoor. ’n Lug-klipbed termiese energie
stoorstelsel beloof om ’n doeltreffende en redelik goedkoop stoorstelsel vir gekonsentreerde
sonkragstasies te wees . Tans is daar geen sodanige stoorstelsel
kommersieël in werking in enige gekonsentreerde sonkragstasie nie. Verdere navorsing
is nodig voordat so ’n stelsel in werking gestel kan word. Die belangrikste
navorsingsgebiede om aan te spreek is die termies-meganiese gedrag van klippe,
klipbed drukverlies korrelasies en effektiewe en praktiese stelsel ontwerpe. Onlangse
studies het getoon dat die drukverlies oor ’n gepakte bed van klippe afhanklik
is van verskeie aspekte soos partikel oriëntasie tot die vloeirigting, partikel
vormen oppervlak grofheid. Die onreëlmatigheid en onvoorspelbaarheid van
die klip vorms maak dit moeilik om ’n algemene drukverlies korrelasie te formuleer.
Tipiese lug-klipbed termiese ontwerp konsepte bestaan uit ’n groot vertikale
vierkantige of silindriese houer waarin die gepakte bed is. Sodanige sisteem
ontwerpe is eenvoudig, maar vatbaar vir die palrat effek en groot drukverliese.
Verskeie studies het voorgestelde konsepte om hierdie kwessies te oorkom, maar
daar is steeds ’n behoefte aanmetodes om die haalbaarheid van die ontwerpe te
bewys.
Die doel van hierdie studie is om ’n Diskreet Element Modelle (DEM) en numeriese
vloeidinamika gekoppelde benadering te ontwikkel wat ’n lug-klipbed termiese energie stoorstelsel kan ondersoek. Hierdie studie fokus spesifiek op
die gebruik van numeriese vloeidinamika. ’n Aanvullende studie fokus op DEM.
Die twee areas van fokus in hierdie studie is die drukverlies en stelsel ontwerp.
’n Diskrete numeriese vloeidinamika simulasie model word gebruik om drukverlies
te voorspel oor gepakte beddens met sferiese en onreëlmatige partikels.
DEM word gebruik om lukraak gepakte beddens van óf sferiese óf onreëlmatige
partikels te skep. Hierdie model is ook gebruik om die hitte-oordrag tussen die
vloeistof en partikel oppervlak te bepaal. ’n Poreuse numeriese vloeidinamika
model word gebruik omdie stelsel ontwerp konsepte voor te stel. Drukverlies en
hitte-oordrag data, voorspel deur die diskrete model, word gebruik in die poreuse
model om die drukverlies- en hittegedrag van ’n TES-stelsel te beskryf. Resultate van die diskrete numeriese vloeidinamikamodel toon dat dit akkuraat
die drukverlies oor ’n gepakte bed van sfere kan voorspel met ’n gemiddelde
afwyking van ongeveer 10%van die resultatewat in die literatuur aangetref word.
Die hitte-oordrag tussen die vloeistof en partikel oppervlak is ook akkuraat voorspel,
met ’n gemiddelde afwyking van tussen 13.36%en 21.83%van die resultate
wat in die literatuur aangetref word. Die diskrete numeriese vloeidinamika model
vir gepakte beddens met onreëlmatige partikels bied probleme wanneer ’n
maas vir die numeriese vloeidinamika, numeriese domein gegenereer word. Die
"clump"logika metode is gebruik om klip partikels te verteenwoordig in hierdie
studie. Hierdiemetode is deur ander studies bewys om akkuraat die klip partikel
en die klip gepakte bed-struktuur te modelleer deur die gebruik van DEM. Hierdie
tegniek het egter probleme gebied toe die oppervlak maas gegenereer is. As
gevolg hiervan is ’n vereenvoudigde "clump"model gebruik om die klip partikels
te verteenwoordig. Die vereenvoudigde "clump"model vertoon karakteristieke
eienskappe van ’n gepakte bed van klippe in terme van drukverlies en hitte oordrag.
Die resultate het egter getoon dat die partikels nie vorm weerstand verteenwoordig
nie. Hierdie resultate kan toegeskryf word aan die afwesigheid van
gladde oppervlaktes en skerp kante, wat normaalweg op klip partikels gevind
word, in die vereenvoudigde "clump"model. Die oneweredige partikels wat in
hierdie studie voorgestel word, blykomnie geskik tewees vir die modellering van
die universele karakteristieke eienskappe van ’n gepakte bed van klippe in terme
van drukverlies nie. Die poreuse numeriese vloeidinamika model is met eksperimentele
metings bevestig omdie termiese gedrag van klipbeddens te voorspel.
Die toepassing van die poreuse model demonstreer dat dit ’n nuttige ontwerp
metode is vir stelsel ontwerp konsepte.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/86233 |
Date | 04 1900 |
Creators | Louw, Andre Du Randt |
Contributors | Gauche, Paul, Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. |
Publisher | Stellenbosch : Stellenbosch University |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Format | 144 p. : ill. |
Rights | Stellenbosch University |
Page generated in 0.0031 seconds