[pt] Um modelo de previsão é uma ferramenta indispensável nos negócios, ajudando na tomada de decisões, seja a curto, médio ou longo prazo. Neste contexto, a implementação de técnicas de aprendizagem de máquina em
modelos de previsão de séries temporais assume notória relevância, visto que o processamento da informação e a extração de conhecimento são cada vez mais exigidos de forma eficiente e dinâmica. Este trabalho desenvolve um modelo denominado Variable Step-Size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, aplicado à previsão de preços do óleo diesel S500 e S10. O modelo apresentado demonstra uma melhor acurácia em comparação com os modelos análogos na literatura, sem perda de desempenho computacional para todas as séries temporais analisadas. / [en] A prediction model is an indispensable tool in business, helping to make decisions, whether in the short, medium, or long term. In this context, the implementation of machine learning techniques in time series forecasting models has a notorious relevance, as information processing and efficient and dynamic knowledge uncovering are increasingly demanded. This work develops a model called Variable Step-Size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, applied to the forecast of weekly prices for S500 and S10 diesel oil, at the Brazilian level, for biweekly and monthly horizons. The presented model demonstrates a better accuracy compared with analogous models in the literature, without loss of
computational performance for all time series analyzed.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:52507 |
Date | 30 April 2021 |
Creators | EDUARDO RAVAGLIA CAMPOS QUEIROZ |
Contributors | FERNANDO LUIZ CYRINO OLIVEIRA, FERNANDO LUIZ CYRINO OLIVEIRA, FERNANDO LUIZ CYRINO OLIVEIRA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | English |
Type | TEXTO |
Page generated in 0.0022 seconds