Return to search

O p-Laplaciano em domínios finos oscilantes / The p-Laplacian in oscillating thin domains

Nesse trabalho, usamos métodos da teoria de homogeneização para analisar o compor- tamento assintótico das soluções da equação do p-Laplaciano com condição de contorno de Neumann posto numa família de domínios finos do tipo. De maneira geral, trabalhamos com funções G:(0,1)\\ x R - R uniformemente limitadas, suaves e L-periódicas na segunda variável. Note que o efeito de domínio fino é estabelecido passando ao limite no parâmetro \\varepsilon>0 com \\varepsilon\\to 0. Além disso, introduzimos um parâmetro \\alpha>0 com o objetivo de representar rugosidades via comportamento oscilat\\\'orio na fronteira superior de R^\\varepsilon. Em nossos resultados mostramos que no limite, uma equação unidimensional é obtida, preservando a quasilinearidade do problema original e capturando tanto o efeito da compressão como das oscilações. / In this work we apply homogenization theory methods in order to analyze the asymptotic behavior of the solutions of a p-Laplacian equation with Neumann boundary condition set in bounded thin domains of the type. Generally, we with functions G:(0,1) x R - R uniformly bounded, smooth and L-periodic in the second variable. The thin domain situation is established passing to the limit in the positive parameter \\varepsilon with \\varepsilon \\to 0. In our results we obtain a one dimensional equation that preserves the quasilinearity from the original problem and capturing the effects of compression and oscillations.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17042019-130307
Date29 March 2019
CreatorsNakasato, Jean Carlos
ContributorsPereira, Marcone Corrêa
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds