In this thesis, we consider the following one dimensional p-Laplacian eigenvalue problem:
-((y¡¦/s)^(p-1))¡¦+(p-1)(q-£fw)y^(p-1)=0 a.e. on (0,1) (0.1)
and satisfy
£\y(0)+ £\ ¡¦ (y¡¦(0)/s(0))=0
£]y(1)+£]¡¦ (y¡¦(1)/s(1))=0 (0.2)
where f^(p-1)=|f|^p-2 f=|f|^p-1 sgnf; £\, £\¡¦, £], £]¡¦ ∈R
such that £\^2+£\¡¦^2>0 and£]^2+£]¡¦^2>0;
and the functions s,q,w are required to satisfy
(1) s,q,w∈L^1(0,1);
(2) for 0≤x≤1, we have s≥0,w≥0 a.e.;
(3) for any x∈ (0,1), ¡ì_0^1 s(t)dt>0, ¡ì_0^x w(t)dt>0,and¡ì_x^1 w(t)dt>0;
(4) if for some x_1<x_2,we have¡ì_ x1^x2 w(t)dt=0,then¡ì_ x1^x2 |q(t)|dt=0;
(5) for all n∈N, there is a partition {£a_i^(n)}_i=1 ^2n of [0,1] such that for any 0<k≤n-1, ¡ì_£a_2k^(n)^ £a_2k+1^(n) w>0 and ¡ì_£a_2k+1^(n)^ £a_2k+2^(n) s>0.
We call the above conditions Atkinson conditions, first introduce in [1].There conditions include the case when s,q,w∈L^1(0,1) and s,w>0 a.e.
We use a generalized Prufer substitution and Caratheodory theorem to prove the existence and uniqueness for the solution of the initial value problem of (0.1) above. Then we generalize the Sturm oscillation theorem to one dimensional p-Laplacian and establish the Sturm-Liouville properties of the p-Laplacian operators with L^1 coefficient functions. Our results filled up some gaps in Binding-Drabek [3].
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0727111-224827 |
Date | 27 July 2011 |
Creators | Wang, Wan-Zhen |
Contributors | Tsung-Lin Lee, Tzon-Tzer Lu, W.C. Lian, Chun-Kong Law |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0727111-224827 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.0014 seconds