La connectivité fonctionnelle cérébrale peut être caractérisée par l'évolution temporelle de la corrélation entre les signaux enregistrés dans des régions spatialement distribuées. Ici, nous proposons une comparaison exhaustive et quantitative pour juger des performances de différentes classes de méthodes pour l'estimation de cette connectivité. Basés sur plusieurs modèles de simulation, les résultats montrent que les performances sont fortement dépendantes des caractéristiques des signaux, aucune méthode ne surpassant les autres dans toutes les situations. La nature non stationnaire et oscillatoire des activités des populations neuronales, nous a amené à proposer un estimateur Temps-Fréquence de relation. La comparaison objective de ce nouvel estimateur avec un estimateur plus classique, basé sur la fonction de cohérence, montre qu'il peut conduire à de meilleures performances. Sur des données réelles, les résultats indiquent que cet estimateur peut augmenter la lisibilité de la représentation TF de la relation et peut ainsi améliorer l'interprétation des relations entre signaux EEG.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00130596 |
Date | 14 December 2005 |
Creators | Ansari-Asl, Karim |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0026 seconds