This thesis presents research and design of a Proportional, Integral, and Derivative (PID) controller that uses a microcontroller (Arduino) platform. The research part discusses the structure of a PID algorithm with some motivating work already performed with the Arduino-based PID controller from various fields. An inexpensive Arduino-based PID controller designed in the laboratory to control the temperature, consists of hardware parts: Arduino UNO, thermoelectric cooler, and electronic components while the software portion includes C/C++ programming. The PID parameters for a particular controller are found manually. The role of different PID parameters is discussed with the subsequent comparison between different modes of PID controllers. The designed system can effectively measure the temperature with an error of ± 0.6℃ while a stable temperature control with only slight deviation from the desired value (setpoint) is achieved. The designed system and concepts learned from the control system serve in pursuing inexpensive and precise ways to control physical parameters within a desired range in our laboratory.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-5737 |
Date | 01 January 2016 |
Creators | Bista, Dinesh |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0018 seconds