La première partie de la thèse est consacrée à la commande avec contraintes de systèmes différentiellement plats. Deux types de systèmes sont étudiés : les systèmes non linéaires de dimension finie et les systèmes linéaires à retards. Nous présentons une approche unifiée pour intégrer les contraintes d'entrée/état/sortie dans la planification des trajectoires. Pour cela, nous spécialisons les sorties plates (ou les trajectoires de référence) sous forme de courbes de Bézier. En utilisant la propriété de platitude, les entrées/états du système peuvent être exprimés sous la forme d'une combinaison de sorties plates (courbes de Bézier) et de leurs dérivées. Par conséquent, nous obtenons explicitement les expressions des points de contrôle des courbes de Bézier d'entrées/états comme une combinaison des points de contrôle des sorties plates. En appliquant les contraintes souhaitées à ces derniers points de contrôle, nous trouvons les régions faisables pour les points de contrôle de Bézier de sortie, c'est-à-dire un ensemble de trajectoires de référence faisables. Ce cadre permet d’éviter le recours, en général fort coûteux d’un point de vue informatique, aux schémas d’optimisation. Pour résoudre les incertitudes liées à l'imprécision de l'identification et modélisation des modèles et les perturbations, nous utilisons la commande sans modèle (Model Free Control-MFC) et dans la deuxième partie de la thèse, nous présentons deux applications démontrant l'efficacité de notre approche : 1. Nous proposons une conception de contrôleur qui évite les procédures d'identification du système du quadrotor tout en restant robuste par rapport aux perturbations endogènes (la performance de contrôle est indépendante de tout changement de masse, inertie, effets gyroscopiques ou aérodynamiques) et aux perturbations exogènes (vent, bruit de mesure). Pour atteindre notre objectif en se basant sur la structure en cascade d'un quadrotor, nous divisons le système en deux sous-systèmes de position et d'attitude contrôlés chacun indépendamment par la commande sans modèle de deuxième ordre dynamique. Nous validons notre approche de contrôle avec trois scénarios réalistes : en présence d'un bruit inconnu, en présence d’un vent variant dans le temps et en présence des variations inconnues de masse, tout en suivant des manœuvres agressives. 2. Nous utilisons la commande sans modèle et les correcteurs « intelligents » associés, pour contrôler (maintenir) l'élasticité horizontale d'un système de Cloud Computing. Comparée aux algorithmes commerciaux d’Auto-Scaling, notre approche facilement implémentable se comporte mieux, même avec de fluctuations aigües de charge. Ceci est confirmé par des expériences sur le cloud public Amazon Web Services (AWS). / The first part of the thesis is devoted to the control of differentially flat systems with constraints. Two types of systems are studied: non-linear finite dimensional systems and linear time-delay systems. We present an approach to embed the input/state/output constraints in a unified manner into the trajectory design for differentially flat systems. To that purpose, we specialize the flat outputs (or the reference trajectories) as Bézier curves. Using the flatness property, the system’s inputs/states can be expressed as a combination of Bézier curved flat outputs and their derivatives. Consequently, we explicitly obtain the expressions of the control points of the inputs/states Bézier curves as a combination of the control points of the flat outputs. By applying desired constraints to the latter control points, we find the feasible regions for the output Bézier control points i.e. a set of feasible reference trajectories. This framework avoids the use of generally high computing cost optimization schemes. To resolve the uncertainties arising from imprecise model identification and the unknown pertubations, we employ the Model-Free Control (MFC) and in the second part of the thesis we present two applications demonstrating the effectiveness of our approach: 1. We propose a controller design that avoids the quadrotor’s system identification procedures while staying robust with respect to the endogenous (the control performance is independent of any mass change, inertia, gyroscopic or aerodynamic effects) and exogenous disturbances (wind, measurement noise). To reach our goal, based on the cascaded structure of a quadrotor, we divide the system into positional and attitude subsystems each controlled by an independent Model-Free controller of second order dynamics. We validate our control approach in three realistic scenarios: in presence of unknown measurement noise, with unknown time-varying wind disturbances and mass variation while tracking aggressive manoeuvres. 2. We employ the Model-Free Control to control (maintain) the “horizontal elasticity” of a Cloud Computing system. When compared to the commercial “Auto-Scaling” algorithms, our easily implementable approach behaves better, even with sharp workload fluctuations. This is confirmed by experiments on the Amazon Web Services (AWS) public cloud.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLS218 |
Date | 11 July 2019 |
Creators | Bekcheva, Maria |
Contributors | Paris Saclay, Mounier, Hugues |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0049 seconds