Return to search

Scalable Scientific Computing Algorithms Using MapReduce

Cloud computing systems, like MapReduce and Pregel, provide a scalable and fault tolerant environment for running computations at massive scale. However, these systems are designed primarily for data intensive computational tasks, while a large class of problems in
scientific computing and business analytics are computationally intensive (i.e., they require a lot of CPU in addition to I/O). In this thesis, we investigate the use of cloud computing systems, in particular MapReduce, for computationally intensive problems, focusing on two classic problems that arise in scienti c computing and also in analytics: maximum clique and matrix inversion.

The key contribution that enables us to e ectively use MapReduce to solve the maximum clique problem on dense graphs is a recursive partitioning method that partitions the graph into several subgraphs of similar size and running time complexity. After partitioning, the maximum cliques of the di erent partitions can be computed independently, and the computation is sped up using a branch and bound method. Our experiments show that our approach leads to good scalability, which is unachievable by other partitioning methods since they result in partitions of di erent sizes and hence lead to load imbalance. Our method is more scalable than an MPI algorithm, and is simpler and more fault tolerant.

For the matrix inversion problem, we show that a recursive block LU decomposition allows us to e ectively compute in parallel both the lower triangular (L) and upper triangular
(U) matrices using MapReduce. After computing the L and U matrices, their inverses are computed using MapReduce. The inverse of the original matrix, which is the product
of the inverses of the L and U matrices, is also obtained using MapReduce. Our technique is the rst matrix inversion technique that uses MapReduce. We show experimentally that our technique has good scalability, and it is simpler and more fault tolerant than MPI implementations such as ScaLAPACK.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/7830
Date January 2013
CreatorsXiang, Jingen
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0021 seconds