In this work, we study return and hitting times in measure-preserving dy- namical systems. We consider a special type of skew-products of two Bernoulli schemes, called a random walk in random scenery. For these systems, the limit distribution of normalized hitting times for cylinders of increasing length is proved to be exponential under the assumption of finite variance of the first order dis- tribution of the Bernoulli scheme representing the walk, and provided the drift is non-zero or the scenery alphabet is finite. Mixing properties of the skew-products are discussed in order to relate our work with some known results on rescaled hitting times for strongly-mixing systems. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:331711 |
Date | January 2015 |
Creators | Kvěš, Martin |
Contributors | Kupsa, Michal, Dostál, Petr |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds